Cargando…
Petal-like NiS-NiO/G-C3N4 Nanocomposite for High-Performance Symmetric Supercapacitor
Graphitic carbon nitride (G-C3N4) and NiS-NiO/G-C3N4 nanocomposite have been synthesized via combustion and hydrothermal techniques, respectively. The chemical and morphological properties of these materials were confirmed using different analytical methods. SEM confirms the formation of G-C3N4 shee...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9784817/ https://www.ncbi.nlm.nih.gov/pubmed/36557433 http://dx.doi.org/10.3390/mi13122134 |
Sumario: | Graphitic carbon nitride (G-C3N4) and NiS-NiO/G-C3N4 nanocomposite have been synthesized via combustion and hydrothermal techniques, respectively. The chemical and morphological properties of these materials were confirmed using different analytical methods. SEM confirms the formation of G-C3N4 sheets containing additional petal-like shapes of NiS-NiO nanoparticles. The electrochemical testing of NiS-NiO/G-C3N4 symmetric supercapacitors is carried out from 0.6 M HCl electrolyte. Such testing includes charge/discharge, cyclic voltammetry, impedance, and supercapacitor stability. The charge/discharge time reaches 790 s at 0.3 A/g, while the cyclic voltammetry curve forms under a high surface area. The produced specific capacitance (C(S)) and energy density values are 766 F/g and 23.55 W.h.kg(−1), correspondingly. |
---|