Cargando…
Dendrobium Multi-Omics Reveal Lipid Remodeling in Response to Freezing
Freezing damage is a common phenomenon responsible for reduced yields of economic crops. Regulation of lipid metabolism plays an important role in plant growth and adaptation during freezing. We previously carried out transcriptome and untargeted metabolome analyses to determine the regulation of fl...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9784835/ https://www.ncbi.nlm.nih.gov/pubmed/36557254 http://dx.doi.org/10.3390/metabo12121216 |
_version_ | 1784857906218270720 |
---|---|
author | Zhan, Xinqiao Qian, Yichun Mao, Bizeng |
author_facet | Zhan, Xinqiao Qian, Yichun Mao, Bizeng |
author_sort | Zhan, Xinqiao |
collection | PubMed |
description | Freezing damage is a common phenomenon responsible for reduced yields of economic crops. Regulation of lipid metabolism plays an important role in plant growth and adaptation during freezing. We previously carried out transcriptome and untargeted metabolome analyses to determine the regulation of flavonol and anthocyanin biosynthesis during freezing treatment (FT) and post-freezing recovery (FR) in Dendrobium catenatum. However, changes in lipid levels are hard to confirm by untargeted metabolomics analysis alone. Regulation of lipid metabolism in response to freezing is largely unknown in Dendrobium. In this study, a multi-omics strategy was used to offer a better means of studying metabolic flow during FT and FR. To this end, 6976 proteins were identified by the 4D_label-free proteome, including 5343 quantified proteins. For each of the two conditions, we enriched differentially accumulated proteins (DAPs) into 15 gene ontology (GO) terms, including primary metabolism, lipid metabolism, and photosynthesis processes. We also identified 7 lipid categories and 3672 lipid species using lipidome assays. We found significant remodeling occurring in the phospholipid category during FT and FR. We also found that most sphingolipids were significantly upregulated. An integrated multi-omics analysis revealed significant changes in the expression levels of 141 mRNAs and encoding proteins under both FT and FR conditions. During FT, phospholipase A (PLA) and phospholipase D (PLD) were associated with phospholipid editing and galactolipid remodeling. These results provide valuable new insights into how the freezing tolerance of D. catenatum might be improved by genetic engineering. |
format | Online Article Text |
id | pubmed-9784835 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-97848352022-12-24 Dendrobium Multi-Omics Reveal Lipid Remodeling in Response to Freezing Zhan, Xinqiao Qian, Yichun Mao, Bizeng Metabolites Article Freezing damage is a common phenomenon responsible for reduced yields of economic crops. Regulation of lipid metabolism plays an important role in plant growth and adaptation during freezing. We previously carried out transcriptome and untargeted metabolome analyses to determine the regulation of flavonol and anthocyanin biosynthesis during freezing treatment (FT) and post-freezing recovery (FR) in Dendrobium catenatum. However, changes in lipid levels are hard to confirm by untargeted metabolomics analysis alone. Regulation of lipid metabolism in response to freezing is largely unknown in Dendrobium. In this study, a multi-omics strategy was used to offer a better means of studying metabolic flow during FT and FR. To this end, 6976 proteins were identified by the 4D_label-free proteome, including 5343 quantified proteins. For each of the two conditions, we enriched differentially accumulated proteins (DAPs) into 15 gene ontology (GO) terms, including primary metabolism, lipid metabolism, and photosynthesis processes. We also identified 7 lipid categories and 3672 lipid species using lipidome assays. We found significant remodeling occurring in the phospholipid category during FT and FR. We also found that most sphingolipids were significantly upregulated. An integrated multi-omics analysis revealed significant changes in the expression levels of 141 mRNAs and encoding proteins under both FT and FR conditions. During FT, phospholipase A (PLA) and phospholipase D (PLD) were associated with phospholipid editing and galactolipid remodeling. These results provide valuable new insights into how the freezing tolerance of D. catenatum might be improved by genetic engineering. MDPI 2022-12-03 /pmc/articles/PMC9784835/ /pubmed/36557254 http://dx.doi.org/10.3390/metabo12121216 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhan, Xinqiao Qian, Yichun Mao, Bizeng Dendrobium Multi-Omics Reveal Lipid Remodeling in Response to Freezing |
title | Dendrobium Multi-Omics Reveal Lipid Remodeling in Response to Freezing |
title_full | Dendrobium Multi-Omics Reveal Lipid Remodeling in Response to Freezing |
title_fullStr | Dendrobium Multi-Omics Reveal Lipid Remodeling in Response to Freezing |
title_full_unstemmed | Dendrobium Multi-Omics Reveal Lipid Remodeling in Response to Freezing |
title_short | Dendrobium Multi-Omics Reveal Lipid Remodeling in Response to Freezing |
title_sort | dendrobium multi-omics reveal lipid remodeling in response to freezing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9784835/ https://www.ncbi.nlm.nih.gov/pubmed/36557254 http://dx.doi.org/10.3390/metabo12121216 |
work_keys_str_mv | AT zhanxinqiao dendrobiummultiomicsreveallipidremodelinginresponsetofreezing AT qianyichun dendrobiummultiomicsreveallipidremodelinginresponsetofreezing AT maobizeng dendrobiummultiomicsreveallipidremodelinginresponsetofreezing |