Cargando…
Fast Sleep Stage Classification Using Cascaded Support Vector Machines with Single-Channel EEG Signals
Long-term sleep stage monitoring is very important for the diagnosis and treatment of insomnia. With the development of wearable electroencephalogram (EEG) devices, we developed a fast and accurate sleep stage classification method in this study with single-channel EEG signals for practical applicat...
Autores principales: | Li, Dezhao, Ruan, Yangtao, Zheng, Fufu, Su, Yan, Lin, Qiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9784858/ https://www.ncbi.nlm.nih.gov/pubmed/36560286 http://dx.doi.org/10.3390/s22249914 |
Ejemplares similares
-
Single‐channel EEG classification of sleep stages based on REM microstructure
por: Rechichi, Irene, et al.
Publicado: (2021) -
Classification of EEG Signals Using a Multiple Kernel Learning Support Vector Machine
por: Li, Xiaoou, et al.
Publicado: (2014) -
Classification of Motor Imagery EEG Signals with Support Vector Machines and Particle Swarm Optimization
por: Ma, Yuliang, et al.
Publicado: (2016) -
Spotlight on Sleep Stage Classification Based on EEG
por: Lambert, Isabelle, et al.
Publicado: (2023) -
Sleep Quality Detection Based on EEG Signals Using Transfer Support Vector Machine Algorithm
por: Wen, Wu
Publicado: (2021)