Cargando…
Influence of Air-Barrier and Curing Light Distance on Conversion and Micro-Hardness of Dental Polymeric Materials
This study aims to assess the conversion degree and hardness behavior of two new commercial dental restorative composites that have been submitted to light curing in different environments (air and glycerin, respectively) at various distances from the light source (1 to 5 mm) and to better understan...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9785261/ https://www.ncbi.nlm.nih.gov/pubmed/36559715 http://dx.doi.org/10.3390/polym14245346 |
_version_ | 1784858006103523328 |
---|---|
author | Ciocan, Lucian Toma Biru, Elena Iuliana Vasilescu, Vlad Gabriel Ghitman, Jana Stefan, Ana-Roxana Iovu, Horia Ilici, Roxana |
author_facet | Ciocan, Lucian Toma Biru, Elena Iuliana Vasilescu, Vlad Gabriel Ghitman, Jana Stefan, Ana-Roxana Iovu, Horia Ilici, Roxana |
author_sort | Ciocan, Lucian Toma |
collection | PubMed |
description | This study aims to assess the conversion degree and hardness behavior of two new commercial dental restorative composites that have been submitted to light curing in different environments (air and glycerin, respectively) at various distances from the light source (1 to 5 mm) and to better understand the influence of the preparation conditions of the restorative materials. Through FT-IR spectrometry, the crosslinking degree of the commercial restorative materials have been investigated and different conversion values were obtained (from ~17% to ~90%) but more importantly, it was shown that the polymerization environment exhibits a significant influence on the crosslinking degree of the resin-based composites especially for obtaining degrees of higher polymerization. Additionally, the mechanical properties of the restorative materials were studied using the nanoindentation technique showing that the nano-hardness behavior is strongly influenced not only by the polymerization lamp position, but also by the chemical structure of the materials and polymerization conditions. Thus, the nanoindentation results showed that the highest nano-hardness values (~0.86 GPa) were obtained in the case of the flowable C3 composite that contains BisEMA and UDMA as a polymerizable organic matrix when crosslinked at 1 mm distance from the curing lamp using glycerin as an oxygen-inhibitor layer. |
format | Online Article Text |
id | pubmed-9785261 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-97852612022-12-24 Influence of Air-Barrier and Curing Light Distance on Conversion and Micro-Hardness of Dental Polymeric Materials Ciocan, Lucian Toma Biru, Elena Iuliana Vasilescu, Vlad Gabriel Ghitman, Jana Stefan, Ana-Roxana Iovu, Horia Ilici, Roxana Polymers (Basel) Article This study aims to assess the conversion degree and hardness behavior of two new commercial dental restorative composites that have been submitted to light curing in different environments (air and glycerin, respectively) at various distances from the light source (1 to 5 mm) and to better understand the influence of the preparation conditions of the restorative materials. Through FT-IR spectrometry, the crosslinking degree of the commercial restorative materials have been investigated and different conversion values were obtained (from ~17% to ~90%) but more importantly, it was shown that the polymerization environment exhibits a significant influence on the crosslinking degree of the resin-based composites especially for obtaining degrees of higher polymerization. Additionally, the mechanical properties of the restorative materials were studied using the nanoindentation technique showing that the nano-hardness behavior is strongly influenced not only by the polymerization lamp position, but also by the chemical structure of the materials and polymerization conditions. Thus, the nanoindentation results showed that the highest nano-hardness values (~0.86 GPa) were obtained in the case of the flowable C3 composite that contains BisEMA and UDMA as a polymerizable organic matrix when crosslinked at 1 mm distance from the curing lamp using glycerin as an oxygen-inhibitor layer. MDPI 2022-12-07 /pmc/articles/PMC9785261/ /pubmed/36559715 http://dx.doi.org/10.3390/polym14245346 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ciocan, Lucian Toma Biru, Elena Iuliana Vasilescu, Vlad Gabriel Ghitman, Jana Stefan, Ana-Roxana Iovu, Horia Ilici, Roxana Influence of Air-Barrier and Curing Light Distance on Conversion and Micro-Hardness of Dental Polymeric Materials |
title | Influence of Air-Barrier and Curing Light Distance on Conversion and Micro-Hardness of Dental Polymeric Materials |
title_full | Influence of Air-Barrier and Curing Light Distance on Conversion and Micro-Hardness of Dental Polymeric Materials |
title_fullStr | Influence of Air-Barrier and Curing Light Distance on Conversion and Micro-Hardness of Dental Polymeric Materials |
title_full_unstemmed | Influence of Air-Barrier and Curing Light Distance on Conversion and Micro-Hardness of Dental Polymeric Materials |
title_short | Influence of Air-Barrier and Curing Light Distance on Conversion and Micro-Hardness of Dental Polymeric Materials |
title_sort | influence of air-barrier and curing light distance on conversion and micro-hardness of dental polymeric materials |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9785261/ https://www.ncbi.nlm.nih.gov/pubmed/36559715 http://dx.doi.org/10.3390/polym14245346 |
work_keys_str_mv | AT ciocanluciantoma influenceofairbarrierandcuringlightdistanceonconversionandmicrohardnessofdentalpolymericmaterials AT biruelenaiuliana influenceofairbarrierandcuringlightdistanceonconversionandmicrohardnessofdentalpolymericmaterials AT vasilescuvladgabriel influenceofairbarrierandcuringlightdistanceonconversionandmicrohardnessofdentalpolymericmaterials AT ghitmanjana influenceofairbarrierandcuringlightdistanceonconversionandmicrohardnessofdentalpolymericmaterials AT stefananaroxana influenceofairbarrierandcuringlightdistanceonconversionandmicrohardnessofdentalpolymericmaterials AT iovuhoria influenceofairbarrierandcuringlightdistanceonconversionandmicrohardnessofdentalpolymericmaterials AT iliciroxana influenceofairbarrierandcuringlightdistanceonconversionandmicrohardnessofdentalpolymericmaterials |