Cargando…

All-Aerosol-Jet-Printed Carbon Nanotube Transistor with Cross-Linked Polymer Dielectrics

The printability of reliable gate dielectrics and their influence on the stability of the device are some of the primary concerns regarding the practical application of printed transistors. Major ongoing research is focusing on the structural properties of dielectric materials and deposition paramet...

Descripción completa

Detalles Bibliográficos
Autores principales: Mishra, Bhagyashree, Chen, Yihong Maggie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9785390/
https://www.ncbi.nlm.nih.gov/pubmed/36558340
http://dx.doi.org/10.3390/nano12244487
Descripción
Sumario:The printability of reliable gate dielectrics and their influence on the stability of the device are some of the primary concerns regarding the practical application of printed transistors. Major ongoing research is focusing on the structural properties of dielectric materials and deposition parameters to reduce interface charge traps and hysteresis caused by the dielectric–semiconductor interface and dielectric bulk. This research focuses on improving the dielectric properties of a printed polymer material, cross-linked polyvinyl phenol (crPVP), by optimizing the cross-linking parameters as well as the aerosol jet printability. These improvements were then applied to the fabrication of completely printed carbon nanotube (CNT)-based thin-film transistors (TFT) to reduce the gate threshold voltage (V(th)) and hysteresis in V(th) during device operation. Finally, a fully aerosol-jet-printed CNT device was demonstrated using a 2:1 weight ratio of PVP with the cross-linker poly(melamine-co-formaldehyde) methylated (PMF) in crPVP as the dielectric material. This device shows significantly less hysteresis and can be operated at a gate threshold voltage as low as −4.8 V with an on/off ratio of more than 10(4).