Cargando…

Automated Identification of Overheated Belt Conveyor Idlers in Thermal Images with Complex Backgrounds Using Binary Classification with CNN

Mechanical industrial infrastructures in mining sites must be monitored regularly. Conveyor systems are mechanical systems that are commonly used for safe and efficient transportation of bulk goods in mines. Regular inspection of conveyor systems is a challenging task for mining enterprises, as conv...

Descripción completa

Detalles Bibliográficos
Autores principales: Siami, Mohammad, Barszcz, Tomasz, Wodecki, Jacek, Zimroz, Radoslaw
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9785391/
https://www.ncbi.nlm.nih.gov/pubmed/36560373
http://dx.doi.org/10.3390/s222410004
_version_ 1784858037202190336
author Siami, Mohammad
Barszcz, Tomasz
Wodecki, Jacek
Zimroz, Radoslaw
author_facet Siami, Mohammad
Barszcz, Tomasz
Wodecki, Jacek
Zimroz, Radoslaw
author_sort Siami, Mohammad
collection PubMed
description Mechanical industrial infrastructures in mining sites must be monitored regularly. Conveyor systems are mechanical systems that are commonly used for safe and efficient transportation of bulk goods in mines. Regular inspection of conveyor systems is a challenging task for mining enterprises, as conveyor systems’ lengths can reach tens of kilometers, where several thousand idlers need to be monitored. Considering the harsh environmental conditions that can affect human health, manual inspection of conveyor systems can be extremely difficult. Hence, the authors proposed an automatic robotics-based inspection for condition monitoring of belt conveyor idlers using infrared images, instead of vibrations and acoustic signals that are commonly used for condition monitoring applications. The first step in the whole process is to segment the overheated idlers from the complex background. However, classical image segmentation techniques do not always deliver accurate results in the detection of target in infrared images with complex backgrounds. For improving the quality of captured infrared images, preprocessing stages are introduced. Afterward, an anomaly detection method based on an outlier detection technique is applied to the preprocessed image for the segmentation of hotspots. Due to the presence of different thermal sources in mining sites that can be captured and wrongly identified as overheated idlers, in this research, we address the overheated idler detection process as an image binary classification task. For this reason, a Convolutional Neural Network (CNN) was used for the binary classification of the segmented thermal images. The accuracy of the proposed condition monitoring technique was compared with our previous research. The metrics for the previous methodology reach a precision of 0.4590 and an F1 score of 0.6292. The metrics for the proposed method reach a precision of 0.9740 and an F1 score of 0.9782. The proposed classification method considerably improved our previous results in terms of the true identification of overheated idlers in the presence of complex backgrounds.
format Online
Article
Text
id pubmed-9785391
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-97853912022-12-24 Automated Identification of Overheated Belt Conveyor Idlers in Thermal Images with Complex Backgrounds Using Binary Classification with CNN Siami, Mohammad Barszcz, Tomasz Wodecki, Jacek Zimroz, Radoslaw Sensors (Basel) Article Mechanical industrial infrastructures in mining sites must be monitored regularly. Conveyor systems are mechanical systems that are commonly used for safe and efficient transportation of bulk goods in mines. Regular inspection of conveyor systems is a challenging task for mining enterprises, as conveyor systems’ lengths can reach tens of kilometers, where several thousand idlers need to be monitored. Considering the harsh environmental conditions that can affect human health, manual inspection of conveyor systems can be extremely difficult. Hence, the authors proposed an automatic robotics-based inspection for condition monitoring of belt conveyor idlers using infrared images, instead of vibrations and acoustic signals that are commonly used for condition monitoring applications. The first step in the whole process is to segment the overheated idlers from the complex background. However, classical image segmentation techniques do not always deliver accurate results in the detection of target in infrared images with complex backgrounds. For improving the quality of captured infrared images, preprocessing stages are introduced. Afterward, an anomaly detection method based on an outlier detection technique is applied to the preprocessed image for the segmentation of hotspots. Due to the presence of different thermal sources in mining sites that can be captured and wrongly identified as overheated idlers, in this research, we address the overheated idler detection process as an image binary classification task. For this reason, a Convolutional Neural Network (CNN) was used for the binary classification of the segmented thermal images. The accuracy of the proposed condition monitoring technique was compared with our previous research. The metrics for the previous methodology reach a precision of 0.4590 and an F1 score of 0.6292. The metrics for the proposed method reach a precision of 0.9740 and an F1 score of 0.9782. The proposed classification method considerably improved our previous results in terms of the true identification of overheated idlers in the presence of complex backgrounds. MDPI 2022-12-19 /pmc/articles/PMC9785391/ /pubmed/36560373 http://dx.doi.org/10.3390/s222410004 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Siami, Mohammad
Barszcz, Tomasz
Wodecki, Jacek
Zimroz, Radoslaw
Automated Identification of Overheated Belt Conveyor Idlers in Thermal Images with Complex Backgrounds Using Binary Classification with CNN
title Automated Identification of Overheated Belt Conveyor Idlers in Thermal Images with Complex Backgrounds Using Binary Classification with CNN
title_full Automated Identification of Overheated Belt Conveyor Idlers in Thermal Images with Complex Backgrounds Using Binary Classification with CNN
title_fullStr Automated Identification of Overheated Belt Conveyor Idlers in Thermal Images with Complex Backgrounds Using Binary Classification with CNN
title_full_unstemmed Automated Identification of Overheated Belt Conveyor Idlers in Thermal Images with Complex Backgrounds Using Binary Classification with CNN
title_short Automated Identification of Overheated Belt Conveyor Idlers in Thermal Images with Complex Backgrounds Using Binary Classification with CNN
title_sort automated identification of overheated belt conveyor idlers in thermal images with complex backgrounds using binary classification with cnn
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9785391/
https://www.ncbi.nlm.nih.gov/pubmed/36560373
http://dx.doi.org/10.3390/s222410004
work_keys_str_mv AT siamimohammad automatedidentificationofoverheatedbeltconveyoridlersinthermalimageswithcomplexbackgroundsusingbinaryclassificationwithcnn
AT barszcztomasz automatedidentificationofoverheatedbeltconveyoridlersinthermalimageswithcomplexbackgroundsusingbinaryclassificationwithcnn
AT wodeckijacek automatedidentificationofoverheatedbeltconveyoridlersinthermalimageswithcomplexbackgroundsusingbinaryclassificationwithcnn
AT zimrozradoslaw automatedidentificationofoverheatedbeltconveyoridlersinthermalimageswithcomplexbackgroundsusingbinaryclassificationwithcnn