Cargando…
Deep Learning-Based Artificial Intelligence to Investigate Targeted Nanoparticles’ Uptake in TNBC Cells
Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer in women. It has the poorest prognosis along with limited therapeutic options. Smart nano-based carriers are emerging as promising approaches in treating TNBC due to their favourable characteristics such as specific...
Autores principales: | Ali, Rafia, Balamurali, Mehala, Varamini, Pegah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9785476/ https://www.ncbi.nlm.nih.gov/pubmed/36555718 http://dx.doi.org/10.3390/ijms232416070 |
Ejemplares similares
-
Overcoming Therapy Resistance and Relapse in TNBC: Emerging Technologies to Target Breast Cancer-Associated Fibroblasts
por: Mollah, Farhana, et al.
Publicado: (2021) -
Potential Nanotechnology-Based Therapeutics to Prevent Cancer Progression through TME Cell-Driven Populations
por: Ali, Rafia, et al.
Publicado: (2022) -
Lipid- and sugar-modified endomorphins: novel targets for the treatment of neuropathic pain
por: Varamini, Pegah, et al.
Publicado: (2013) -
Breast Cancer Bone Metastasis: A Narrative Review of Emerging Targeted Drug Delivery Systems
por: Shao, Huimin, et al.
Publicado: (2022) -
Deep Learning-Based Artificial Intelligence for Mammography
por: Yoon, Jung Hyun, et al.
Publicado: (2021)