Cargando…

In Silico Comparative Exploration of Allergens of Periplaneta americana, Blattella germanica and Phoenix dactylifera for the Diagnosis of Patients Suffering from IgE-Mediated Allergic Respiratory Diseases

The burden of allergic illnesses is continuously rising, and patient diagnosis is a significant problem because of how intricately hereditary and environmental variables interact. The past three to four decades have seen an outbreak of allergies in high-income countries. According to reports on the...

Descripción completa

Detalles Bibliográficos
Autores principales: Kausar, Mohd Adnan, Bhardwaj, Tulika, Anwar, Sadaf, Alenazi, Fahaad, Ali, Abrar, Alshammari, Khalid Farhan, AboElnaga, Shimaa Mohammed Hasnin, Singh, Rajeev, Najm, Mohammad Zeeshan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9785491/
https://www.ncbi.nlm.nih.gov/pubmed/36557872
http://dx.doi.org/10.3390/molecules27248740
Descripción
Sumario:The burden of allergic illnesses is continuously rising, and patient diagnosis is a significant problem because of how intricately hereditary and environmental variables interact. The past three to four decades have seen an outbreak of allergies in high-income countries. According to reports on the illness, asthma affects around 300 million individuals worldwide. Identifying clinically important allergens for the accurate classification of IgE-mediated allergy respiratory disease diagnosis would be beneficial for implementing standardized allergen-associated therapy. Therefore, the current study includes an in silico analysis to identify potential IgE-mediated allergens in date palms and cockroaches. Such an immunoinformatic approach aids the prioritization of allergens with probable involvement in IgE-mediated allergic respiratory diseases. Immunoglobulin E (IgE) was used for molecular dynamic simulations, antigen–antibody docking analyses, epitope identifications, and characterizations. The potential of these allergens (Per a7, Per a 1.0102, and Bla g 1.0101) in IgE-mediated allergic respiratory diseases was explored through the evaluation of physicochemical characteristics, interaction observations, docking, and molecular dynamics simulations for drug and vaccine development.