Cargando…
Machine Learning-Based Stator Current Data-Driven PMSM Stator Winding Fault Diagnosis
Permanent magnet synchronous motors (PMSMs) have become one of the most important components of modern drive systems. Therefore, fault diagnosis and condition monitoring of these machines have been the subject of many studies in recent years. This article presents an intelligent stator current-data...
Autores principales: | Pietrzak, Przemyslaw, Wolkiewicz, Marcin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9785622/ https://www.ncbi.nlm.nih.gov/pubmed/36560037 http://dx.doi.org/10.3390/s22249668 |
Ejemplares similares
-
Demagnetization Fault Diagnosis of Permanent Magnet Synchronous Motors Based on Stator Current Signal Processing and Machine Learning Algorithms
por: Pietrzak, Przemyslaw, et al.
Publicado: (2023) -
Partitioned Stator Switched Flux Machine: Novel Winding Configurations
por: Irfan, Muhammad, et al.
Publicado: (2020) -
Voltage and Current Sensor Fault Diagnosis Method for Traction Converter with Two Stator Current Sensors
por: Tao, Hongwei, et al.
Publicado: (2022) -
Induction Motor Stator Winding Inter-Tern Short Circuit Fault Detection Based on Start-Up Current Envelope Energy
por: Chen, Liting, et al.
Publicado: (2023) -
Vibration and current dataset of three-phase permanent magnet synchronous motors with stator faults
por: Jung, Wonho, et al.
Publicado: (2023)