Cargando…
Diagnostic Performance in Differentiating COVID-19 from Other Viral Pneumonias on CT Imaging: Multi-Reader Analysis Compared with an Artificial Intelligence-Based Model
Growing evidence suggests that artificial intelligence tools could help radiologists in differentiating COVID-19 pneumonia from other types of viral (non-COVID-19) pneumonia. To test this hypothesis, an R-AI classifier capable of discriminating between COVID-19 and non-COVID-19 pneumonia was develop...
Autores principales: | Rizzetto, Francesco, Berta, Luca, Zorzi, Giulia, Cincotta, Antonino, Travaglini, Francesca, Artioli, Diana, Nerini Molteni, Silvia, Vismara, Chiara, Scaglione, Francesco, Torresin, Alberto, Colombo, Paola Enrica, Carbonaro, Luca Alessandro, Vanzulli, Angelo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9785796/ https://www.ncbi.nlm.nih.gov/pubmed/36548527 http://dx.doi.org/10.3390/tomography8060235 |
Ejemplares similares
-
Artificial intelligence for differentiating COVID-19 from other viral pneumonias on CT: comparative analysis of different models based on quantitative and radiomic approaches
por: Zorzi, Giulia, et al.
Publicado: (2023) -
ARTIFICIAL INTELLIGENCE MODELS FOR COVID-19 CLASSIFICATION: RADIOMIC FEATURES AND QUANTITATIVE ANALYSIS OF COMPUTED TOMOGRAPHY IMAGING OF VIRAL PNEUMONIA
por: Zorzi, Giulia, et al.
Publicado: (2022) -
Focal Liver Lesions in Budd-Chiari Syndrome: Spectrum of Imaging Findings
por: Rizzetto, Francesco, et al.
Publicado: (2023) -
Impact of COVID-19 Pandemic on the Workload of Diagnostic Radiology: A 2-Year Observational Study in a Tertiary Referral Hospital
por: Rizzetto, Francesco, et al.
Publicado: (2023) -
Automatic lung segmentation in COVID-19 patients: Impact on quantitative computed tomography analysis
por: Berta, L., et al.
Publicado: (2021)