Cargando…
Solid-State NMR-Based Metabolomics Imprinting Elucidation in Tissue Metabolites, Metabolites Inhibition, and Metabolic Hub in Zebrafish by Chitosan
In this study, we demonstrated that chitosan-applied zebrafish (Danio rerio) tissue metabolite alteration, metabolic discrimination, and metabolic phenotypic expression occurred. The spectroscopy of solid-state (1)H nuclear magnetic resonance (ss (1)H-NMR) has been used. Chitosan has no, or low, tox...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9785866/ https://www.ncbi.nlm.nih.gov/pubmed/36557301 http://dx.doi.org/10.3390/metabo12121263 |
_version_ | 1784858153260679168 |
---|---|
author | Ganesan, Raja Mukherjee, Anirban Goutam Gopalakrishnan, Abilash Valsala Prabhakaran, Vasantha-Srinivasan |
author_facet | Ganesan, Raja Mukherjee, Anirban Goutam Gopalakrishnan, Abilash Valsala Prabhakaran, Vasantha-Srinivasan |
author_sort | Ganesan, Raja |
collection | PubMed |
description | In this study, we demonstrated that chitosan-applied zebrafish (Danio rerio) tissue metabolite alteration, metabolic discrimination, and metabolic phenotypic expression occurred. The spectroscopy of solid-state (1)H nuclear magnetic resonance (ss (1)H-NMR) has been used. Chitosan has no, or low, toxicity and is a biocompatible biomaterial; however, the metabolite mechanisms underlying the biological effect of chitosan are poorly understood. The zebrafish is now one of the most popular ecotoxicology models. Zebrafish were exposed to chitosan concentrations of 0, 50, 100, 200, and 500 mg/L, and the body tissue was subjected to metabolites-targeted profiling. The zebrafish samples were measured via solvent-suppressed and T(2)-filtered methods with in vivo zebrafish metabolites. The metabolism of glutamate, glutamine, glutathione (GSH), taurine, trimethylamine (TMA), and its N-oxide (TMAO) is also significantly altered. Here, we report the quantification of metabolites and the biological application of chitosan. The metabolomics profile of chitosan in zebrafish has been detected, and the results indicated disturbed amino acid metabolism, the TCA cycle, and glycolysis. Our results demonstrate the potential of comparative metabolite profiling for discovering bioactive metabolites and they highlight the power of chitosan-applied chemical metabolomics to uncover new biological insights. |
format | Online Article Text |
id | pubmed-9785866 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-97858662022-12-24 Solid-State NMR-Based Metabolomics Imprinting Elucidation in Tissue Metabolites, Metabolites Inhibition, and Metabolic Hub in Zebrafish by Chitosan Ganesan, Raja Mukherjee, Anirban Goutam Gopalakrishnan, Abilash Valsala Prabhakaran, Vasantha-Srinivasan Metabolites Article In this study, we demonstrated that chitosan-applied zebrafish (Danio rerio) tissue metabolite alteration, metabolic discrimination, and metabolic phenotypic expression occurred. The spectroscopy of solid-state (1)H nuclear magnetic resonance (ss (1)H-NMR) has been used. Chitosan has no, or low, toxicity and is a biocompatible biomaterial; however, the metabolite mechanisms underlying the biological effect of chitosan are poorly understood. The zebrafish is now one of the most popular ecotoxicology models. Zebrafish were exposed to chitosan concentrations of 0, 50, 100, 200, and 500 mg/L, and the body tissue was subjected to metabolites-targeted profiling. The zebrafish samples were measured via solvent-suppressed and T(2)-filtered methods with in vivo zebrafish metabolites. The metabolism of glutamate, glutamine, glutathione (GSH), taurine, trimethylamine (TMA), and its N-oxide (TMAO) is also significantly altered. Here, we report the quantification of metabolites and the biological application of chitosan. The metabolomics profile of chitosan in zebrafish has been detected, and the results indicated disturbed amino acid metabolism, the TCA cycle, and glycolysis. Our results demonstrate the potential of comparative metabolite profiling for discovering bioactive metabolites and they highlight the power of chitosan-applied chemical metabolomics to uncover new biological insights. MDPI 2022-12-14 /pmc/articles/PMC9785866/ /pubmed/36557301 http://dx.doi.org/10.3390/metabo12121263 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ganesan, Raja Mukherjee, Anirban Goutam Gopalakrishnan, Abilash Valsala Prabhakaran, Vasantha-Srinivasan Solid-State NMR-Based Metabolomics Imprinting Elucidation in Tissue Metabolites, Metabolites Inhibition, and Metabolic Hub in Zebrafish by Chitosan |
title | Solid-State NMR-Based Metabolomics Imprinting Elucidation in Tissue Metabolites, Metabolites Inhibition, and Metabolic Hub in Zebrafish by Chitosan |
title_full | Solid-State NMR-Based Metabolomics Imprinting Elucidation in Tissue Metabolites, Metabolites Inhibition, and Metabolic Hub in Zebrafish by Chitosan |
title_fullStr | Solid-State NMR-Based Metabolomics Imprinting Elucidation in Tissue Metabolites, Metabolites Inhibition, and Metabolic Hub in Zebrafish by Chitosan |
title_full_unstemmed | Solid-State NMR-Based Metabolomics Imprinting Elucidation in Tissue Metabolites, Metabolites Inhibition, and Metabolic Hub in Zebrafish by Chitosan |
title_short | Solid-State NMR-Based Metabolomics Imprinting Elucidation in Tissue Metabolites, Metabolites Inhibition, and Metabolic Hub in Zebrafish by Chitosan |
title_sort | solid-state nmr-based metabolomics imprinting elucidation in tissue metabolites, metabolites inhibition, and metabolic hub in zebrafish by chitosan |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9785866/ https://www.ncbi.nlm.nih.gov/pubmed/36557301 http://dx.doi.org/10.3390/metabo12121263 |
work_keys_str_mv | AT ganesanraja solidstatenmrbasedmetabolomicsimprintingelucidationintissuemetabolitesmetabolitesinhibitionandmetabolichubinzebrafishbychitosan AT mukherjeeanirbangoutam solidstatenmrbasedmetabolomicsimprintingelucidationintissuemetabolitesmetabolitesinhibitionandmetabolichubinzebrafishbychitosan AT gopalakrishnanabilashvalsala solidstatenmrbasedmetabolomicsimprintingelucidationintissuemetabolitesmetabolitesinhibitionandmetabolichubinzebrafishbychitosan AT prabhakaranvasanthasrinivasan solidstatenmrbasedmetabolomicsimprintingelucidationintissuemetabolitesmetabolitesinhibitionandmetabolichubinzebrafishbychitosan |