Cargando…
Environmental, Economic, and Social Aspects of Human Urine Valorization through Microbial Fuel Cells from the Circular Economy Perspective
Population growth increases the challenge of meeting basic human needs, such as water, a limited resource. Consumption habits and water pollution have compromised natural resources to unsustainable levels. Sustainable effluent treatment practices, such as decentralized systems focused on energy, nut...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9785870/ https://www.ncbi.nlm.nih.gov/pubmed/36557539 http://dx.doi.org/10.3390/mi13122239 |
_version_ | 1784858154228514816 |
---|---|
author | Martínez-Castrejón, Mariana López-Díaz, Jazmin A. Solorza-Feria, Omar Talavera-Mendoza, Oscar Rodríguez-Herrera, América L. Alcaraz-Morales, Osbelia Hernández-Flores, Giovanni |
author_facet | Martínez-Castrejón, Mariana López-Díaz, Jazmin A. Solorza-Feria, Omar Talavera-Mendoza, Oscar Rodríguez-Herrera, América L. Alcaraz-Morales, Osbelia Hernández-Flores, Giovanni |
author_sort | Martínez-Castrejón, Mariana |
collection | PubMed |
description | Population growth increases the challenge of meeting basic human needs, such as water, a limited resource. Consumption habits and water pollution have compromised natural resources to unsustainable levels. Sustainable effluent treatment practices, such as decentralized systems focused on energy, nutrients, and water recovery, have attracted the attention of the scientific community. Human urine (HU) is a physiological liquid waste whose main component is water (~95%). HU has a significant amount of nutrients, such as N, P, K, and organic matter, which are usually lacking in fecal coliforms. Therefore, the possibility exists of recovering nutrients and energy from HU using sustainable and non-sustainable technologies. Treating HU in bioelectrochemical systems (BES) is a novel alternative to obtaining byproducts from this effluent more sustainably than in electrochemical systems. Microbial fuel cells (MFCs) are an interesting example, contributing to HU revalorization from unwanted waste into a valuable resource of nutrients, energy, and water. Even when urine-operated MFCs have not generated attractive potential outputs or produced considerable amounts of bioelectricity, this review emphasizes HU advantages as nutrients or water sources. The aim of this review was to analyze the current development of BES for HU treatment based on the water circular economy, discussing challenges and perspectives researchers might encounter. |
format | Online Article Text |
id | pubmed-9785870 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-97858702022-12-24 Environmental, Economic, and Social Aspects of Human Urine Valorization through Microbial Fuel Cells from the Circular Economy Perspective Martínez-Castrejón, Mariana López-Díaz, Jazmin A. Solorza-Feria, Omar Talavera-Mendoza, Oscar Rodríguez-Herrera, América L. Alcaraz-Morales, Osbelia Hernández-Flores, Giovanni Micromachines (Basel) Review Population growth increases the challenge of meeting basic human needs, such as water, a limited resource. Consumption habits and water pollution have compromised natural resources to unsustainable levels. Sustainable effluent treatment practices, such as decentralized systems focused on energy, nutrients, and water recovery, have attracted the attention of the scientific community. Human urine (HU) is a physiological liquid waste whose main component is water (~95%). HU has a significant amount of nutrients, such as N, P, K, and organic matter, which are usually lacking in fecal coliforms. Therefore, the possibility exists of recovering nutrients and energy from HU using sustainable and non-sustainable technologies. Treating HU in bioelectrochemical systems (BES) is a novel alternative to obtaining byproducts from this effluent more sustainably than in electrochemical systems. Microbial fuel cells (MFCs) are an interesting example, contributing to HU revalorization from unwanted waste into a valuable resource of nutrients, energy, and water. Even when urine-operated MFCs have not generated attractive potential outputs or produced considerable amounts of bioelectricity, this review emphasizes HU advantages as nutrients or water sources. The aim of this review was to analyze the current development of BES for HU treatment based on the water circular economy, discussing challenges and perspectives researchers might encounter. MDPI 2022-12-16 /pmc/articles/PMC9785870/ /pubmed/36557539 http://dx.doi.org/10.3390/mi13122239 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Martínez-Castrejón, Mariana López-Díaz, Jazmin A. Solorza-Feria, Omar Talavera-Mendoza, Oscar Rodríguez-Herrera, América L. Alcaraz-Morales, Osbelia Hernández-Flores, Giovanni Environmental, Economic, and Social Aspects of Human Urine Valorization through Microbial Fuel Cells from the Circular Economy Perspective |
title | Environmental, Economic, and Social Aspects of Human Urine Valorization through Microbial Fuel Cells from the Circular Economy Perspective |
title_full | Environmental, Economic, and Social Aspects of Human Urine Valorization through Microbial Fuel Cells from the Circular Economy Perspective |
title_fullStr | Environmental, Economic, and Social Aspects of Human Urine Valorization through Microbial Fuel Cells from the Circular Economy Perspective |
title_full_unstemmed | Environmental, Economic, and Social Aspects of Human Urine Valorization through Microbial Fuel Cells from the Circular Economy Perspective |
title_short | Environmental, Economic, and Social Aspects of Human Urine Valorization through Microbial Fuel Cells from the Circular Economy Perspective |
title_sort | environmental, economic, and social aspects of human urine valorization through microbial fuel cells from the circular economy perspective |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9785870/ https://www.ncbi.nlm.nih.gov/pubmed/36557539 http://dx.doi.org/10.3390/mi13122239 |
work_keys_str_mv | AT martinezcastrejonmariana environmentaleconomicandsocialaspectsofhumanurinevalorizationthroughmicrobialfuelcellsfromthecirculareconomyperspective AT lopezdiazjazmina environmentaleconomicandsocialaspectsofhumanurinevalorizationthroughmicrobialfuelcellsfromthecirculareconomyperspective AT solorzaferiaomar environmentaleconomicandsocialaspectsofhumanurinevalorizationthroughmicrobialfuelcellsfromthecirculareconomyperspective AT talaveramendozaoscar environmentaleconomicandsocialaspectsofhumanurinevalorizationthroughmicrobialfuelcellsfromthecirculareconomyperspective AT rodriguezherreraamerical environmentaleconomicandsocialaspectsofhumanurinevalorizationthroughmicrobialfuelcellsfromthecirculareconomyperspective AT alcarazmoralesosbelia environmentaleconomicandsocialaspectsofhumanurinevalorizationthroughmicrobialfuelcellsfromthecirculareconomyperspective AT hernandezfloresgiovanni environmentaleconomicandsocialaspectsofhumanurinevalorizationthroughmicrobialfuelcellsfromthecirculareconomyperspective |