Cargando…

The Application of PVDF-Based Piezoelectric Patches in Energy Harvesting from Tire Deformation

The application of Polyvinylidene Fluoride or Polyvinylidene Difluoride (PVDF) in harvesting energy from tire deformation was investigated in this study. An instrumented tire with different sizes of PVDF-based piezoelectric patches and a tri-axial accelerometer attached to its inner liner was used f...

Descripción completa

Detalles Bibliográficos
Autores principales: Nguyen, Kevin, Bryant, Matthew, Song, In-Hyouk, You, Byoung Hee, Khaleghian, Seyedmeysam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9785955/
https://www.ncbi.nlm.nih.gov/pubmed/36560363
http://dx.doi.org/10.3390/s22249995
Descripción
Sumario:The application of Polyvinylidene Fluoride or Polyvinylidene Difluoride (PVDF) in harvesting energy from tire deformation was investigated in this study. An instrumented tire with different sizes of PVDF-based piezoelectric patches and a tri-axial accelerometer attached to its inner liner was used for this purpose and was tested under different conditions on asphalt and concrete surfaces. The results demonstrated that on both pavement types, the generated voltage was directly proportional to the size of the harvester patches, the longitudinal velocity, and the normal load. Additionally, the generated voltage was inversely proportional to the tire inflation pressure. Moreover, the range of generated voltages was slightly higher on asphalt compared to the same testing conditions on the concrete surface. Based on the results, it was concluded that in addition to the potential role of the PVDF-based piezoelectric film in harvesting energy from tire deformation, they demonstrate great potential to be used as self-powered sensors to estimate the tire-road contact parameters.