Cargando…
iADRGSE: A Graph-Embedding and Self-Attention Encoding for Identifying Adverse Drug Reaction in the Earlier Phase of Drug Development
Adverse drug reactions (ADRs) are a major issue to be addressed by the pharmaceutical industry. Early and accurate detection of potential ADRs contributes to enhancing drug safety and reducing financial expenses. The majority of the approaches that have been employed to identify ADRs are limited to...
Autores principales: | Cheng, Xiang, Cheng, Meiling, Yu, Liyi, Xiao, Xuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9786008/ https://www.ncbi.nlm.nih.gov/pubmed/36555858 http://dx.doi.org/10.3390/ijms232416216 |
Ejemplares similares
-
Prediction of adverse drug reactions based on knowledge graph embedding
por: Zhang, Fei, et al.
Publicado: (2021) -
MSEDDI: Multi-Scale Embedding for Predicting Drug—Drug Interaction Events
por: Yu, Liyi, et al.
Publicado: (2023) -
Drug-Disease Graph: Predicting Adverse Drug Reaction Signals via Graph Neural Network with Clinical Data
por: Kwak, Heeyoung, et al.
Publicado: (2020) -
Predicting circRNA-drug sensitivity associations via graph attention auto-encoder
por: Deng, Lei, et al.
Publicado: (2022) -
Prediction of Drug-Drug Interaction Using an Attention-Based Graph Neural Network on Drug Molecular Graphs
por: Feng, Yue-Hua, et al.
Publicado: (2022)