Cargando…
In Silico Prediction of the Toxicity of Nitroaromatic Compounds: Application of Ensemble Learning QSAR Approach
In this work, a dataset of more than 200 nitroaromatic compounds is used to develop Quantitative Structure–Activity Relationship (QSAR) models for the estimation of in vivo toxicity based on 50% lethal dose to rats (LD(50)). An initial set of 4885 molecular descriptors was generated and applied to b...
Autores principales: | Daghighi, Amirreza, Casanola-Martin, Gerardo M., Timmerman, Troy, Milenković, Dejan, Lučić, Bono, Rasulev, Bakhtiyor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9786026/ https://www.ncbi.nlm.nih.gov/pubmed/36548579 http://dx.doi.org/10.3390/toxics10120746 |
Ejemplares similares
-
The Hydrolysis Rate of Paraoxonase-1 Q and R Isoenzymes: An In Silico Study Based on In Vitro Data
por: Karabulut, Sedat, et al.
Publicado: (2022) -
Recent Developments in 3D QSAR and Molecular Docking Studies of Organic and Nanostructures
por: Rasulev, Bakhtiyor
Publicado: (2016) -
Machine Learning Study of Metabolic Networks vs ChEMBL Data of Antibacterial Compounds
por: Diéguez-Santana, Karel, et al.
Publicado: (2022) -
Quantitative Structure-Activity Relationship (QSAR) Studies on the Toxic Effects of Nitroaromatic Compounds (NACs): A Systematic Review
por: Huang, Tao, et al.
Publicado: (2021) -
Advantages and limitations of classic and 3D QSAR approaches in nano-QSAR studies based on biological activity of fullerene derivatives
por: Jagiello, Karolina, et al.
Publicado: (2016)