Cargando…
Effects of Soil Water Shortage on Seedling Shoot and Root Growth of Saragolle Lucana Tetraploid Wheat (Triticum durum Desf.) Landrace
Ancient wheats may be a source of traits that are useful for the tolerance of climate change foreseen conditions of raising temperatures and low water availability. Previous research has shown a fine root system and a high mass of rhizosheath per unit root mass in the italian durum wheat (Triticum d...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9786060/ https://www.ncbi.nlm.nih.gov/pubmed/36559604 http://dx.doi.org/10.3390/plants11243492 |
Sumario: | Ancient wheats may be a source of traits that are useful for the tolerance of climate change foreseen conditions of raising temperatures and low water availability. Previous research has shown a fine root system and a high mass of rhizosheath per unit root mass in the italian durum wheat (Triticum durum Desf) landrace Saragolle Lucana, and this may be relevant for successfully facing adverse conditions during seedling establishment. We investigated the effect of soil water shortage in Saragolle seedlings on root architecture, rhizosheath formation and biomass allocation. Pot experiments were conducted by comparing two levels of soil available water content (AWC): WW (100% of AWC) and DS (50% of AWC). Phenology was delayed by eight days in DS and above and belowground traits were measured at Zadoks 1.3 for each treatment. Biometric data collected at the same phenological stage show that DS plants did not reach the levels of biomass, surface area and space occupation of WW even after attaining the same developmental stage. Namely, plant dimensions were lower at low soil water availability, with the exception of rhizosheath production: DS yielded a 50% increase in rhizosheath mass and 32% increase in rhizosheath mass per unit root mass. The proportion of plant mass reduction in DS was 29.7% for aboveground parts and 34.7% for roots, while reductions in leaf and root surface areas exceeded 43%. The root/shoot mass and area ratios were not significantly different between treatments, and a higher impact on aboveground than on belowground traits at reduced available water was shown only by a lower ratio of shoot height to root depth in DS than in WW. Increases in rhizosheath in absolute and relative terms, which were observed in our experiment in spite of smaller root systems in the ancient durum wheat variety Saragolle lucana at DS, may provide an interesting trait for plant performance in conditions of low soil water availability both for water-related issue and for other effects on plant nutrition and relations with the rhizosphere. |
---|