Cargando…

Arrangement of Indocyanine Green in a 1.5-Nanometer Channel to Achieve High-Efficiency Imaging of the Intestinal Lymphatic System

The complications of inflammatory bowel diseases (IBDs) seriously endanger people’s health, such as bleeding, polyp hyperplasia, and even cancer. Although the precise pathophysiology of IBD is unknown, alterations in the intestinal lymphatic network, such as lymphangiogenesis and lymphatic vessel dy...

Descripción completa

Detalles Bibliográficos
Autores principales: Kong, Xiangyi, Gao, Nan, Du, Jianshi, Zhao, Qing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9786184/
https://www.ncbi.nlm.nih.gov/pubmed/36557838
http://dx.doi.org/10.3390/molecules27248704
Descripción
Sumario:The complications of inflammatory bowel diseases (IBDs) seriously endanger people’s health, such as bleeding, polyp hyperplasia, and even cancer. Although the precise pathophysiology of IBD is unknown, alterations in the intestinal lymphatic network, such as lymphangiogenesis and lymphatic vessel dysfunction, are well-established features. Therefore, the development of a reliable technology is urgently required, with a stereoscopic, deep, and high-resolution technology for IBD lymphatic targeting imaging in clinical practice. However, indocyanine green, the only clinically approved imaging agent by the Food and Drug Administration, can easily cause self-aggregation or be interfered with by microenvironments, causing fluorescence quenching, which seriously affects the imaging and detective capabilities. Herein, indocyanine green molecules are arranged in a 1.5-nanometer one-dimensional channel (TpPa-1@ICG). Based on this specified structure, the fluorescence enhancement effect is observed in the TpPa-1@ICG resultant, and the fluorescence intensity is enhanced by 27%. In addition, the ICG-incorporated porous solid reveals outstanding solvent (dichloromethane, tetrahydrofuran, etc.) and thermal (>300 °C) stability. After modifying the target molecules, TpPa-1@ICG showed excellent imaging ability for intestinal lymphatic vessels, providing a new imaging tool for IBDs research.