Cargando…

Molecular Dynamics Simulation of Poly(Ether Ether Ketone) (PEEK) Polymer to Analyze Intermolecular Ordering by Low Wavenumber Raman Spectroscopy and X-ray Diffraction

Poly(ether ether ketone) (PEEK) is an important engineering plastic and evaluation of its local crystallinity in composites is critical for producing strong and reliable mechanical parts. Low wavenumber Raman spectroscopy and X-ray diffraction are promising techniques for the analysis of crystal ord...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Xiaoran, Yokokura, Seiya, Nagahama, Taro, Yamaguchi, Makoto, Shimada, Toshihiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9786246/
https://www.ncbi.nlm.nih.gov/pubmed/36559773
http://dx.doi.org/10.3390/polym14245406
Descripción
Sumario:Poly(ether ether ketone) (PEEK) is an important engineering plastic and evaluation of its local crystallinity in composites is critical for producing strong and reliable mechanical parts. Low wavenumber Raman spectroscopy and X-ray diffraction are promising techniques for the analysis of crystal ordering but a detailed understanding of the spectra has not been established. Here, we use molecular dynamics combined with a newly developed approximation to simulate local vibrational features to understand the effect of intermolecular ordering in the Raman spectra. We found that intermolecular ordering does affect the low wavenumber Raman spectra and the X-ray diffraction as observed in the experiment. Raman spectroscopy of intermolecular vibration modes is a promising technique to evaluate the local crystallinity of PEEK and other engineering plastics, and the present technique offers an estimation without requiring heavy computational resources.