Cargando…

ARAIM Stochastic Model Refinements for GNSS Positioning Applications in Support of Critical Vehicle Applications

Integrity monitoring (IM) is essential if GNSS positioning technologies are to be fully trusted by future intelligent transport systems. A tighter and conservative stochastic model can shrink protection levels in the position domain and therefore enhance the user-level integrity. In this study, the...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Ling, Sun, Nan, Rizos, Chris, Jiang, Yiping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9786326/
https://www.ncbi.nlm.nih.gov/pubmed/36560166
http://dx.doi.org/10.3390/s22249797
Descripción
Sumario:Integrity monitoring (IM) is essential if GNSS positioning technologies are to be fully trusted by future intelligent transport systems. A tighter and conservative stochastic model can shrink protection levels in the position domain and therefore enhance the user-level integrity. In this study, the stochastic models for vehicle-based GNSS positioning are refined in three respects: (1) Gaussian bounds of precise orbit and clock error products from the International GNSS Service are used; (2) a variable standard deviation to characterize the residual tropospheric delay after model correction is adopted; and (3) an elevation-dependent model describing the receiver-related errors is adaptively refined using least-squares variance component estimation. The refined stochastic models are used for positioning and IM under the Advanced Receiver Autonomous Integrity Monitoring (ARAIM) framework, which is considered the basis for multi-constellation GNSS navigation to support air navigation in the future. These refinements are assessed via global simulations and real data experiments. Different schemes are designed and tested to evaluate the corresponding enhancements on ARAIM availability for both aviation and ground vehicle-based positioning applications.