Cargando…
Aqueous Rechargeable Zn/ZnO Battery Based on Deposition/Dissolution Chemistry
Recently, a novel electrochemical regulation associated with a deposition/dissolution reaction on an electrode surface has been proven to show superiority in large-scale energy storage systems (ESSs). Hence, in the search for high-performance electrodes showcasing these novel regulations, we utilize...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9786327/ https://www.ncbi.nlm.nih.gov/pubmed/36557797 http://dx.doi.org/10.3390/molecules27248664 |
Sumario: | Recently, a novel electrochemical regulation associated with a deposition/dissolution reaction on an electrode surface has been proven to show superiority in large-scale energy storage systems (ESSs). Hence, in the search for high-performance electrodes showcasing these novel regulations, we utilized a low-cost ZnO microsphere electrode to construct aqueous rechargeable batteries (ARBs) that supplied a harvestable and storable charge through electrochemical deposition/dissolution via a reversible manganese oxidation reaction (MOR)/manganese reduction reaction (MRR), respectively, induced by the inherent formation/dissolution of zinc basic sulfate in a mild aqueous electrolyte solution containing 2 M ZnSO(4) and 0.2 M MnSO(4). |
---|