Cargando…

Protection of Vitamin C on Oxidative Damage Caused by Long-Term Excess Iodine Exposure in Wistar Rats

Vitamin C was reported to be able to protect against oxidative damage due to its reducibility. 120 Wistar rats were randomly divided into 4 × 2 groups, including normal iodine (NI), high iodine (HI), low vitamin C (HI + LC), and high vitamin C (HI + HC); potassium iodide (KI) and potassium iodate (K...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Rong, Liu, Lanchun, Qian, Tingting, Zhao, Meng, Che, Wenjing, Hou, Xin, Xie, Honglei, Su, Yue, Pan, Haowen, Li, Jia, Liu, Peng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9786336/
https://www.ncbi.nlm.nih.gov/pubmed/36558407
http://dx.doi.org/10.3390/nu14245245
Descripción
Sumario:Vitamin C was reported to be able to protect against oxidative damage due to its reducibility. 120 Wistar rats were randomly divided into 4 × 2 groups, including normal iodine (NI), high iodine (HI), low vitamin C (HI + LC), and high vitamin C (HI + HC); potassium iodide (KI) and potassium iodate (KIO(3)) were commonly used as additives for iodized salt, so every group was also divided into KI and KIO(3) groups. After 6 months’ feed, the activities of antioxidant enzymes and Lipid Peroxide (MDA) content in serum, liver, kidney, brain, thyroid and lens were determined. In serum, for males, long-term excess iodine intake caused oxidative damage; in the liver, male rats in the HI + LC group had the highest MDA content, which showed that low-dose vitamin C might promote oxidative damage; in kidneys, the MDA content in the HI and HI + LC groups of females was higher; in the brain, high-dose vitamin C could increase the activity of superoxide dismutase (SOD), which was decreased by high iodine intake, and it also decreased MDA content; in the thyroid, for KIO(3), the activity of SOD in the HI group was lower than NI and HI + LC; in the lens, the MDA content in females was lower than males. Long-term excess iodine exposure caused oxidative damage and showed sex difference, and vitamin C had a protective effect on it, especially for high-dose vitamin C.