Cargando…
A Top-Down Approach and Thermal Characterization of Luminescent Hybrid BPA.DA-MMA@Ln(2)L(3) Materials Based on Lanthanide(III) 1H-Pyrazole-3,5-Dicarboxylates
In this study, novel hybrid materials exhibiting luminescent properties were prepared and characterized. A top-down approach obtained a series of polymeric materials with incorporated different amounts (0.1; 0.2; 0.5; 1, and 2 wt.%) of dopants, i.e., europium(III) and terbium(III) 1H-pyrazole-3,5-di...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9786596/ https://www.ncbi.nlm.nih.gov/pubmed/36556638 http://dx.doi.org/10.3390/ma15248826 |
Sumario: | In this study, novel hybrid materials exhibiting luminescent properties were prepared and characterized. A top-down approach obtained a series of polymeric materials with incorporated different amounts (0.1; 0.2; 0.5; 1, and 2 wt.%) of dopants, i.e., europium(III) and terbium(III) 1H-pyrazole-3,5-dicarboxylates, as luminescent sources. Methyl methacrylate and bisphenol A diacrylate monomers were applied for matrix formation. The resulting materials were characterized using Fourier transform infrared spectroscopy (FTIR) and thermal analysis methods (TG-DTG-DSC, TG-FTIR) in air and nitrogen atmosphere, as well as by luminescence spectroscopy. The homogeneity of the resulting materials was investigated by means of optical microscopy. All obtained materials exhibited good thermal stability in both oxidizing and inert atmospheres. The addition of lanthanide(III) complexes slightly changed the thermal decomposition pathways. The main volatile products of materials pyrolysis are carbon oxides, water, methyl methacrylic acid and its derivatives, bisphenol A, 4-propylphenol, and methane. The luminescence properties of the lanthanide complexes and the prepared hybrid materials were investigated in detail. |
---|