Cargando…
Reinforcement Learning with Side Information for the Uncertainties
Recently, there has been a growing interest in the consensus of a multi-agent system (MAS) with advances in artificial intelligence and distributed computing. Sliding mode control (SMC) is a well-known method that provides robust control in the presence of uncertainties. While our previous study int...
Autor principal: | Yang, Janghoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9786629/ https://www.ncbi.nlm.nih.gov/pubmed/36560180 http://dx.doi.org/10.3390/s22249811 |
Ejemplares similares
-
Neurorobotic reinforcement learning for domains with parametrical uncertainty
por: Amaya, Camilo, et al.
Publicado: (2023) -
A Novel Conflict Management Method Based on Uncertainty of Evidence and Reinforcement Learning for Multi-Sensor Information Fusion
por: Huang, Fanghui, et al.
Publicado: (2021) -
Safe Model-Based Reinforcement Learning for Systems With Parametric Uncertainties
por: Mahmud, S. M. Nahid, et al.
Publicado: (2021) -
Adaptive Discount Factor for Deep Reinforcement Learning in Continuing Tasks with Uncertainty
por: Kim, MyeongSeop, et al.
Publicado: (2022) -
Modelling and Predictive Monitoring of Business Processes under Uncertainty with Reinforcement Learning
por: Bousdekis, Alexandros, et al.
Publicado: (2023)