Cargando…

Freshwater Flux Variability Lengthens the Period of the Low‐Frequency AMOC Variability

Atlantic Meridional Overturning Circulation (AMOC) exhibits interdecadal to multidecadal variability, yet the role of surface freshwater flux (FWF) variability in this AMOC variability remains unclear. This study isolates the contribution of FWF variability in modulating AMOC through a partially cou...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Fukai, Lu, Jian, Kwon, Young‐Oh, Frankignoul, Claude, Luo, Yiyong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9786630/
https://www.ncbi.nlm.nih.gov/pubmed/36582353
http://dx.doi.org/10.1029/2022GL100136
Descripción
Sumario:Atlantic Meridional Overturning Circulation (AMOC) exhibits interdecadal to multidecadal variability, yet the role of surface freshwater flux (FWF) variability in this AMOC variability remains unclear. This study isolates the contribution of FWF variability in modulating AMOC through a partially coupled experiment, in which the effect of the interactive FWF is disabled. It is demonstrated that the impact of the coupled FWF variability enhances the persistence of density and deep convection anomalies in the Labrador Sea (LS), thus lengthening the period of the AMOC oscillation on multidecadal timescale and suppressing its ∼30‐year periodicity. Further lead‐lag regressions illuminate that the more persistent LS density anomalies are maintained by two mechanisms: (a) The local temperature‐salinity coupling through the evaporation and (b) a downstream propagation along the East Greenland Current of the extra salinity anomaly due to the sea ice melting changes associated with an atmosphere forcing over the southern Greenland tip.