Cargando…
Towards an Enrichment Optimization Algorithm (EOA)‐based Target Specific Docking Functions for Virtual Screening
Docking‐based virtual screening (VS) is a common starting point in many drug discovery projects. While ligand‐based approaches may sometimes provide better results, the advantage of docking lies in its ability to provide reliable ligand binding modes and approximated binding free energies, two facto...
Autores principales: | Spiegel, Jacob, Senderowitz, Hanoch |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9786651/ https://www.ncbi.nlm.nih.gov/pubmed/35790469 http://dx.doi.org/10.1002/minf.202200034 |
Ejemplares similares
-
A Comparison between Enrichment Optimization Algorithm (EOA)-Based and Docking-Based Virtual Screening
por: Spiegel, Jacob, et al.
Publicado: (2021) -
Evaluation of QSAR Equations for Virtual Screening
por: Spiegel, Jacob, et al.
Publicado: (2020) -
A reliable computational workflow for the selection of optimal screening libraries
por: Gilad, Yocheved, et al.
Publicado: (2015) -
Optimization of Cavity-Based Negative Images to Boost
Docking Enrichment in Virtual Screening
por: Kurkinen, Sami T., et al.
Publicado: (2022) -
RANdom SAmple Consensus (RANSAC) algorithm for material-informatics: application to photovoltaic solar cells
por: Kaspi, Omer, et al.
Publicado: (2017)