Cargando…
The potential and realized foraging movements of bees are differentially determined by body size and sociality
Reversing biodiversity declines requires a better understanding of organismal mobility, as movement processes dictate the scale at which species interact with the environment. Previous studies have demonstrated that species foraging ranges, and therefore, habitat use increases with body size. Yet, f...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9786665/ https://www.ncbi.nlm.nih.gov/pubmed/35792515 http://dx.doi.org/10.1002/ecy.3809 |
_version_ | 1784858340812128256 |
---|---|
author | Kendall, Liam K. Mola, John M. Portman, Zachary M. Cariveau, Daniel P. Smith, Henrik G. Bartomeus, Ignasi |
author_facet | Kendall, Liam K. Mola, John M. Portman, Zachary M. Cariveau, Daniel P. Smith, Henrik G. Bartomeus, Ignasi |
author_sort | Kendall, Liam K. |
collection | PubMed |
description | Reversing biodiversity declines requires a better understanding of organismal mobility, as movement processes dictate the scale at which species interact with the environment. Previous studies have demonstrated that species foraging ranges, and therefore, habitat use increases with body size. Yet, foraging ranges are also affected by other life‐history traits, such as sociality, which influence the need of and ability to detect resources. We evaluated the effect of body size and sociality on potential and realized foraging ranges using a compiled dataset of 383 measurements for 81 bee species. Potential ranges were larger than realized ranges and increased more steeply with body size. Highly eusocial species had larger realized foraging ranges than primitively eusocial or solitary taxa. We contend that potential ranges describe species movement capabilities, whereas realized ranges depict how foraging movements result from interactions between species traits and environmental conditions. Furthermore, the complex communication strategies and large colony sizes in highly eusocial species may facilitate foraging over wider areas in response to resource depletion. Our findings should contribute to a greater understanding of landscape ecology and conservation, as traits that influence movement mediate species vulnerability to habitat loss and fragmentation. |
format | Online Article Text |
id | pubmed-9786665 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-97866652022-12-27 The potential and realized foraging movements of bees are differentially determined by body size and sociality Kendall, Liam K. Mola, John M. Portman, Zachary M. Cariveau, Daniel P. Smith, Henrik G. Bartomeus, Ignasi Ecology Report Reversing biodiversity declines requires a better understanding of organismal mobility, as movement processes dictate the scale at which species interact with the environment. Previous studies have demonstrated that species foraging ranges, and therefore, habitat use increases with body size. Yet, foraging ranges are also affected by other life‐history traits, such as sociality, which influence the need of and ability to detect resources. We evaluated the effect of body size and sociality on potential and realized foraging ranges using a compiled dataset of 383 measurements for 81 bee species. Potential ranges were larger than realized ranges and increased more steeply with body size. Highly eusocial species had larger realized foraging ranges than primitively eusocial or solitary taxa. We contend that potential ranges describe species movement capabilities, whereas realized ranges depict how foraging movements result from interactions between species traits and environmental conditions. Furthermore, the complex communication strategies and large colony sizes in highly eusocial species may facilitate foraging over wider areas in response to resource depletion. Our findings should contribute to a greater understanding of landscape ecology and conservation, as traits that influence movement mediate species vulnerability to habitat loss and fragmentation. John Wiley & Sons, Inc. 2022-09-01 2022-11 /pmc/articles/PMC9786665/ /pubmed/35792515 http://dx.doi.org/10.1002/ecy.3809 Text en © 2022 The Authors. Ecology published by Wiley Periodicals LLC on behalf of The Ecological Society of America. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Report Kendall, Liam K. Mola, John M. Portman, Zachary M. Cariveau, Daniel P. Smith, Henrik G. Bartomeus, Ignasi The potential and realized foraging movements of bees are differentially determined by body size and sociality |
title | The potential and realized foraging movements of bees are differentially determined by body size and sociality |
title_full | The potential and realized foraging movements of bees are differentially determined by body size and sociality |
title_fullStr | The potential and realized foraging movements of bees are differentially determined by body size and sociality |
title_full_unstemmed | The potential and realized foraging movements of bees are differentially determined by body size and sociality |
title_short | The potential and realized foraging movements of bees are differentially determined by body size and sociality |
title_sort | potential and realized foraging movements of bees are differentially determined by body size and sociality |
topic | Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9786665/ https://www.ncbi.nlm.nih.gov/pubmed/35792515 http://dx.doi.org/10.1002/ecy.3809 |
work_keys_str_mv | AT kendallliamk thepotentialandrealizedforagingmovementsofbeesaredifferentiallydeterminedbybodysizeandsociality AT molajohnm thepotentialandrealizedforagingmovementsofbeesaredifferentiallydeterminedbybodysizeandsociality AT portmanzacharym thepotentialandrealizedforagingmovementsofbeesaredifferentiallydeterminedbybodysizeandsociality AT cariveaudanielp thepotentialandrealizedforagingmovementsofbeesaredifferentiallydeterminedbybodysizeandsociality AT smithhenrikg thepotentialandrealizedforagingmovementsofbeesaredifferentiallydeterminedbybodysizeandsociality AT bartomeusignasi thepotentialandrealizedforagingmovementsofbeesaredifferentiallydeterminedbybodysizeandsociality AT kendallliamk potentialandrealizedforagingmovementsofbeesaredifferentiallydeterminedbybodysizeandsociality AT molajohnm potentialandrealizedforagingmovementsofbeesaredifferentiallydeterminedbybodysizeandsociality AT portmanzacharym potentialandrealizedforagingmovementsofbeesaredifferentiallydeterminedbybodysizeandsociality AT cariveaudanielp potentialandrealizedforagingmovementsofbeesaredifferentiallydeterminedbybodysizeandsociality AT smithhenrikg potentialandrealizedforagingmovementsofbeesaredifferentiallydeterminedbybodysizeandsociality AT bartomeusignasi potentialandrealizedforagingmovementsofbeesaredifferentiallydeterminedbybodysizeandsociality |