Cargando…
Formation of Diamane Nanostructures in Bilayer Graphene on Langasite under Irradiation with a Focused Electron Beam
In the presented paper, we studied bilayer CVD graphene transferred to a langasite substrate and irradiated with a focused electron beam through a layer of polymethyl methacrylate (PMMA). Changes in the Raman spectra and an increase in the electrical resistance of bigraphene after irradiation indica...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9786889/ https://www.ncbi.nlm.nih.gov/pubmed/36558260 http://dx.doi.org/10.3390/nano12244408 |
Sumario: | In the presented paper, we studied bilayer CVD graphene transferred to a langasite substrate and irradiated with a focused electron beam through a layer of polymethyl methacrylate (PMMA). Changes in the Raman spectra and an increase in the electrical resistance of bigraphene after irradiation indicate a local phase transition associated with graphene diamondization. The results are explained in the framework of the theory of a chemically induced phase transition of bilayer graphene to diamane, which can be associated with the release of hydrogen and oxygen atoms from PMMA and langasite due to the “knock-on” effect, respectively, upon irradiation of the structure with an electron beam. Theoretical calculations of the modified structure of bigraphene on langasite and the experimental evaluation of sp(3)-hybridized carbon fraction indicate the formation of diamane nanoclusters in the bigraphene irradiated regions. This result can be considered as the first realization of local tunable bilayer graphene diamondization. |
---|