Cargando…
Stability estimation for unsupervised clustering: A review
Cluster analysis remains one of the most challenging yet fundamental tasks in unsupervised learning. This is due in part to the fact that there are no labels or gold standards by which performance can be measured. Moreover, the wide range of clustering methods available is governed by different obje...
Autores principales: | Liu, Tianmou, Yu, Han, Blair, Rachael Hageman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9787023/ https://www.ncbi.nlm.nih.gov/pubmed/36583207 http://dx.doi.org/10.1002/wics.1575 |
Ejemplares similares
-
Data mining application to healthcare fraud detection: a two-step unsupervised clustering method for outlier detection with administrative databases
por: Massi, Michela Carlotta, et al.
Publicado: (2020) -
Characterization of clinical patterns of dengue patients using an unsupervised machine learning approach
por: Macedo Hair, Gleicy, et al.
Publicado: (2019) -
A framework for stability‐based module detection in correlation graphs
por: Tian, Mingmei, et al.
Publicado: (2021) -
Unsupervised Human Activity Recognition Using the Clustering Approach: A Review
por: Ariza Colpas, Paola, et al.
Publicado: (2020) -
Towards a methodology for cluster searching to provide conceptual and contextual “richness” for systematic reviews of complex interventions: case study (CLUSTER)
por: Booth, Andrew, et al.
Publicado: (2013)