Cargando…
GradFreeBits: Gradient-Free Bit Allocation for Mixed-Precision Neural Networks
Quantized neural networks (QNNs) are among the main approaches for deploying deep neural networks on low-resource edge devices. Training QNNs using different levels of precision throughout the network (mixed-precision quantization) typically achieves superior trade-offs between performance and compu...
Autores principales: | Bodner, Benjamin Jacob, Ben-Shalom, Gil, Treister, Eran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9787339/ https://www.ncbi.nlm.nih.gov/pubmed/36560141 http://dx.doi.org/10.3390/s22249772 |
Ejemplares similares
-
Feedback Bits Allocation for Guaranteed Bit Rate Services in Cooperative Cognitive Radio Networks
por: Lee, Deokhui, et al.
Publicado: (2020) -
SensiMix: Sensitivity-Aware 8-bit index & 1-bit value mixed precision quantization for BERT compression
por: Piao, Tairen, et al.
Publicado: (2022) -
Bit by Bit: The Darwinian Basis of Life
por: Joyce, Gerald F.
Publicado: (2012) -
It from Bit or Bit from It?: on physics and information
por: Aguirre, Anthony, et al.
Publicado: (2015) -
Suboptimal Greedy Power Allocation Schemes for Discrete Bit Loading
por: Al-Hanafy, Waleed, et al.
Publicado: (2013)