Cargando…
Deep Deterministic Policy Gradient-Based Autonomous Driving for Mobile Robots in Sparse Reward Environments
In this paper, we propose a deep deterministic policy gradient (DDPG)-based path-planning method for mobile robots by applying the hindsight experience replay (HER) technique to overcome the performance degradation resulting from sparse reward problems occurring in autonomous driving mobile robots....
Autores principales: | Park, Minjae, Lee, Seok Young, Hong, Jin Seok, Kwon, Nam Kyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9787388/ https://www.ncbi.nlm.nih.gov/pubmed/36559941 http://dx.doi.org/10.3390/s22249574 |
Ejemplares similares
-
Efficient Path Planning for Mobile Robot Based on Deep Deterministic Policy Gradient
por: Gong, Hui, et al.
Publicado: (2022) -
An enhanced deep deterministic policy gradient algorithm for intelligent control of robotic arms
por: Dong, Ruyi, et al.
Publicado: (2023) -
Smooth Autonomous Patrolling for a Differential-Drive Mobile Robot in Dynamic Environments
por: Šelek, Ana, et al.
Publicado: (2023) -
Dynamical Motor Control Learned with Deep Deterministic Policy Gradient
por: Shi, Haibo, et al.
Publicado: (2018) -
Network Architecture for Optimizing Deep Deterministic Policy Gradient Algorithms
por: Zhang, Haifei, et al.
Publicado: (2022)