Cargando…
Characterization and Dynamics of the Gut Microbiota in Rice Fishes at Different Developmental Stages in Rice-Fish Coculture Systems
The rice-fish system (RFS), a traditional coculture farming model, was selected as a “globally important agricultural heritage system.” Host-associated microbiota play important roles in development, metabolism, physiology, and immune function. However, studies on the gut microbiota of aquatic anima...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9787495/ https://www.ncbi.nlm.nih.gov/pubmed/36557627 http://dx.doi.org/10.3390/microorganisms10122373 |
Sumario: | The rice-fish system (RFS), a traditional coculture farming model, was selected as a “globally important agricultural heritage system.” Host-associated microbiota play important roles in development, metabolism, physiology, and immune function. However, studies on the gut microbiota of aquatic animals in the RFS are scarce, especially the lack of baseline knowledge of the dynamics of gut microbial communities in rice fish during different developmental stages. In this study, we characterized the microbial composition, community structure, and functions of several sympatric aquatic animals (common carp (Cyprinus carpio), crucian carp (Carassius carassius), and black-spotted frogs (Pelophylax nigromaculatus)), and the environment (water) in the RFS using 16S rRNA gene sequencing. Moreover, we investigated stage-specific signatures in the gut microbiota of common carp throughout the three developmental stages (juvenile, sub-adult, and adult). Our results indicated that the Fusobacteriota, Proteobacteria, and Firmicutes were dominant gut microbial phyla in rice fish. The differences in gut microbial compositions and community structure between the three aquatic species were observed. Although no significant differences in alpha diversity were observed across the three developmental stages, the microbial composition and community structure varied with development in common carp in the RFS, with an increase in the relative abundance of Firmicutes in sub-adults and a shift in the functional features of the community. This study sheds light on the gut microbiota of aquatic animals in the RFS. It deepens our understanding of the dynamics of gut microflora during common carp development, which may help improve aquaculture strategies in the RFS. |
---|