Cargando…
Near‐Cloud Aerosol Retrieval Using Machine Learning Techniques, and Implied Direct Radiative Effects
There is a lack of satellite‐based aerosol retrievals in the vicinity of low‐topped clouds, mainly because reflectance from aerosols is overwhelmed by three‐dimensional cloud radiative effects. To account for cloud radiative effects on reflectance observations, we develop a Convolutional Neural Netw...
Autores principales: | Yang, C. Kevin, Chiu, J. Christine, Marshak, Alexander, Feingold, Graham, Várnai, Tamás, Wen, Guoyong, Yamaguchi, Takanobu, Jan van Leeuwen, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9787555/ https://www.ncbi.nlm.nih.gov/pubmed/36582354 http://dx.doi.org/10.1029/2022GL098274 |
Ejemplares similares
-
Observational Constraints on Warm Cloud Microphysical Processes Using Machine Learning and Optimization Techniques
por: Chiu, J. Christine, et al.
Publicado: (2021) -
Aerosol effects on clouds are concealed by natural cloud heterogeneity and satellite retrieval errors
por: Arola, Antti, et al.
Publicado: (2022) -
Observational constraint on cloud susceptibility weakened by aerosol retrieval limitations
por: Ma, Po-Lun, et al.
Publicado: (2018) -
Realism of Lagrangian Large Eddy Simulations Driven by Reanalysis Meteorology: Tracking a Pocket of Open Cells Under a Biomass Burning Aerosol Layer
por: Kazil, Jan, et al.
Publicado: (2021) -
Adaptive behavior of marine cellular clouds
por: Koren, Ilan, et al.
Publicado: (2013)