Cargando…
Distributed Raman Spectrum Data Augmentation System Using Federated Learning with Deep Generative Models
Chemical agents are one of the major threats to soldiers in modern warfare, so it is so important to detect chemical agents rapidly and accurately on battlefields. Raman spectroscopy-based detectors are widely used but have many limitations. The Raman spectrum changes unpredictably due to various en...
Autores principales: | Kim, Yaeran, Lee, Woonghee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9787597/ https://www.ncbi.nlm.nih.gov/pubmed/36560269 http://dx.doi.org/10.3390/s22249900 |
Ejemplares similares
-
Deep learning data augmentation for Raman spectroscopy cancer tissue classification
por: Wu, Man, et al.
Publicado: (2021) -
Trust-Augmented Deep Reinforcement Learning for Federated Learning Client Selection
por: Rjoub, Gaith, et al.
Publicado: (2022) -
Federated Reinforcement Learning Based AANs with LEO Satellites and UAVs
por: Yoo, Seungho, et al.
Publicado: (2021) -
Federated Learning via Augmented Knowledge Distillation for Heterogenous Deep Human Activity Recognition Systems
por: Gad, Gad, et al.
Publicado: (2022) -
Predicting anticancer drug sensitivity on distributed data sources using federated deep learning
por: Xu, Xiaolu, et al.
Publicado: (2023)