Cargando…
Utilizing stability criteria in choosing feature selection methods yields reproducible results in microbiome data
Feature selection is indispensable in microbiome data analysis, but it can be particularly challenging as microbiome data sets are high dimensional, underdetermined, sparse and compositional. Great efforts have recently been made on developing new methods for feature selection that handle the above...
Autores principales: | Jiang, Lingjing, Haiminen, Niina, Carrieri, Anna‐Paola, Huang, Shi, Vázquez‐Baeza, Yoshiki, Parida, Laxmi, Kim, Ho‐Cheol, Swafford, Austin D., Knight, Rob, Natarajan, Loki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9787628/ https://www.ncbi.nlm.nih.gov/pubmed/33914902 http://dx.doi.org/10.1111/biom.13481 |
Ejemplares similares
-
Computational Aspects of N-Mixture Models
por: Dennis, Emily B, et al.
Publicado: (2015) -
Estimating Absolute and Relative Case Fatality Ratios from Infectious Disease Surveillance Data
por: Reich, Nicholas G., et al.
Publicado: (2012) -
Fair regression for health care spending
por: Zink, Anna, et al.
Publicado: (2020) -
The profile inter‐unit reliability
por: He, Kevin, et al.
Publicado: (2019) -
A sensitivity analysis approach for informative dropout using shared parameter models
por: Su, Li, et al.
Publicado: (2019)