Cargando…
Numerical Model Driving Multi-Domain Information Transfer Method for Bearing Fault Diagnosis
Given the complexity of the application scenarios of rolling bearing and the severe scarcity of fault samples, a solution to the issue of fault diagnosis under varying working conditions along with the absence of fault samples is required. A numerical model-driven cross-domain fault diagnosis method...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9787723/ https://www.ncbi.nlm.nih.gov/pubmed/36560130 http://dx.doi.org/10.3390/s22249759 |
_version_ | 1784858580690665472 |
---|---|
author | Zhang, Long Zhang, Hao Xiao, Qian Zhao, Lijuan Hu, Yanqing Liu, Haoyang Qiao, Yu |
author_facet | Zhang, Long Zhang, Hao Xiao, Qian Zhao, Lijuan Hu, Yanqing Liu, Haoyang Qiao, Yu |
author_sort | Zhang, Long |
collection | PubMed |
description | Given the complexity of the application scenarios of rolling bearing and the severe scarcity of fault samples, a solution to the issue of fault diagnosis under varying working conditions along with the absence of fault samples is required. A numerical model-driven cross-domain fault diagnosis method targeting variable working conditions is proposed based on the cross-Domain Nuisance Attribute Projection (cDNAP). Firstly, the simulation datasets consisting of multiple fault types under variable working conditions are constructed to solve the problem of incomplete fault samples. Secondly, the simulation datasets are expanded by means of generating adversarial network to ensure sufficient samples for subsequent model training. Finally, cDNAP is used to obtain the cross-domain simulation projection matrix, which eliminates the variance in the distribution of measured and simulated sample features under varying working conditions. The experimental results of cross-domain for variable working conditions show that the diagnostic accuracy reaches up to 99%. Compared with DANN, DSAN, and DAAN domain adversarial neural networks, the proposed method performs better in bearing fault diagnosis. |
format | Online Article Text |
id | pubmed-9787723 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-97877232022-12-24 Numerical Model Driving Multi-Domain Information Transfer Method for Bearing Fault Diagnosis Zhang, Long Zhang, Hao Xiao, Qian Zhao, Lijuan Hu, Yanqing Liu, Haoyang Qiao, Yu Sensors (Basel) Article Given the complexity of the application scenarios of rolling bearing and the severe scarcity of fault samples, a solution to the issue of fault diagnosis under varying working conditions along with the absence of fault samples is required. A numerical model-driven cross-domain fault diagnosis method targeting variable working conditions is proposed based on the cross-Domain Nuisance Attribute Projection (cDNAP). Firstly, the simulation datasets consisting of multiple fault types under variable working conditions are constructed to solve the problem of incomplete fault samples. Secondly, the simulation datasets are expanded by means of generating adversarial network to ensure sufficient samples for subsequent model training. Finally, cDNAP is used to obtain the cross-domain simulation projection matrix, which eliminates the variance in the distribution of measured and simulated sample features under varying working conditions. The experimental results of cross-domain for variable working conditions show that the diagnostic accuracy reaches up to 99%. Compared with DANN, DSAN, and DAAN domain adversarial neural networks, the proposed method performs better in bearing fault diagnosis. MDPI 2022-12-13 /pmc/articles/PMC9787723/ /pubmed/36560130 http://dx.doi.org/10.3390/s22249759 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Long Zhang, Hao Xiao, Qian Zhao, Lijuan Hu, Yanqing Liu, Haoyang Qiao, Yu Numerical Model Driving Multi-Domain Information Transfer Method for Bearing Fault Diagnosis |
title | Numerical Model Driving Multi-Domain Information Transfer Method for Bearing Fault Diagnosis |
title_full | Numerical Model Driving Multi-Domain Information Transfer Method for Bearing Fault Diagnosis |
title_fullStr | Numerical Model Driving Multi-Domain Information Transfer Method for Bearing Fault Diagnosis |
title_full_unstemmed | Numerical Model Driving Multi-Domain Information Transfer Method for Bearing Fault Diagnosis |
title_short | Numerical Model Driving Multi-Domain Information Transfer Method for Bearing Fault Diagnosis |
title_sort | numerical model driving multi-domain information transfer method for bearing fault diagnosis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9787723/ https://www.ncbi.nlm.nih.gov/pubmed/36560130 http://dx.doi.org/10.3390/s22249759 |
work_keys_str_mv | AT zhanglong numericalmodeldrivingmultidomaininformationtransfermethodforbearingfaultdiagnosis AT zhanghao numericalmodeldrivingmultidomaininformationtransfermethodforbearingfaultdiagnosis AT xiaoqian numericalmodeldrivingmultidomaininformationtransfermethodforbearingfaultdiagnosis AT zhaolijuan numericalmodeldrivingmultidomaininformationtransfermethodforbearingfaultdiagnosis AT huyanqing numericalmodeldrivingmultidomaininformationtransfermethodforbearingfaultdiagnosis AT liuhaoyang numericalmodeldrivingmultidomaininformationtransfermethodforbearingfaultdiagnosis AT qiaoyu numericalmodeldrivingmultidomaininformationtransfermethodforbearingfaultdiagnosis |