Cargando…
Numerical Model Driving Multi-Domain Information Transfer Method for Bearing Fault Diagnosis
Given the complexity of the application scenarios of rolling bearing and the severe scarcity of fault samples, a solution to the issue of fault diagnosis under varying working conditions along with the absence of fault samples is required. A numerical model-driven cross-domain fault diagnosis method...
Autores principales: | Zhang, Long, Zhang, Hao, Xiao, Qian, Zhao, Lijuan, Hu, Yanqing, Liu, Haoyang, Qiao, Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9787723/ https://www.ncbi.nlm.nih.gov/pubmed/36560130 http://dx.doi.org/10.3390/s22249759 |
Ejemplares similares
-
Multiple Enhanced Sparse Representation via IACMDSR Model for Bearing Compound Fault Diagnosis
por: Zhang, Long, et al.
Publicado: (2022) -
Fault Diagnosis Method of Roadheader Bearing Based on VMD and Domain Adaptive Transfer Learning
por: Qu, Xiaofei, et al.
Publicado: (2023) -
Deep Transfer Network with Multi-Space Dynamic Distribution Adaptation for Bearing Fault Diagnosis
por: Zheng, Xiaorong, et al.
Publicado: (2022) -
Triplet Loss Guided Adversarial Domain Adaptation for Bearing Fault Diagnosis
por: Wang, Xiaodong, et al.
Publicado: (2020) -
Pre-Processing Method to Improve Cross-Domain Fault Diagnosis for Bearing
por: Kim, Taeyun, et al.
Publicado: (2021)