Cargando…
Carotid body responses to O(2) and CO(2) in hypoxia‐tolerant naked mole rats
AIM: Naked mole rats (NMRs) exhibit blunted hypoxic (HVR) and hypercapnic ventilatory responses (HCVR). The mechanism(s) underlying these responses are largely unknown. We hypothesized that attenuated carotid body (CB) sensitivity to hypoxia and hypercapnia contributes to the near absence of ventila...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9787741/ https://www.ncbi.nlm.nih.gov/pubmed/35757963 http://dx.doi.org/10.1111/apha.13851 |
_version_ | 1784858584951029760 |
---|---|
author | Peng, Ying‐Jie Nanduri, Jayasri Wang, Ning Khan, Shakil A. Pamenter, Matthew E. Prabhakar, Nanduri R. |
author_facet | Peng, Ying‐Jie Nanduri, Jayasri Wang, Ning Khan, Shakil A. Pamenter, Matthew E. Prabhakar, Nanduri R. |
author_sort | Peng, Ying‐Jie |
collection | PubMed |
description | AIM: Naked mole rats (NMRs) exhibit blunted hypoxic (HVR) and hypercapnic ventilatory responses (HCVR). The mechanism(s) underlying these responses are largely unknown. We hypothesized that attenuated carotid body (CB) sensitivity to hypoxia and hypercapnia contributes to the near absence of ventilatory responses to hypoxia and CO(2) in NMRs. METHODS: We measured ex vivo CB sensory nerve activity, phrenic nerve activity (an estimation of ventilation), and blood gases in urethane‐anesthetized NMRs and C57BL/6 mice breathing normoxic, hypoxic, or hypercapnic gases. CB morphology, carbon monoxide, and H(2)S levels were also determined. RESULTS: Relative to mice, NMRs had blunted CB and HVR. Morphologically, NMRs have larger CBs, which contained more glomus cells than in mice. Furthermore, NMR glomus cells form a dispersed pattern compared to a clustered pattern in mice. Hemeoxygenase (HO)‐1 mRNA was elevated in NMR CBs, and an HO inhibitor increased CB sensitivity to hypoxia in NMRs. This increase was blocked by an H(2)S synthesis inhibitor, suggesting that interrupted gas messenger signaling contributes to the blunted CB responses and HVR in NMRs. Regarding hypercapnia, CB and ventilatory responses to CO(2) in NMRs were larger than in mice. Carbonic anhydrase (CA)‐2 mRNA is elevated in NMR CBs, and a CA inhibitor blocked the augmented CB response to CO(2) in NMRs, indicating CA activity regulates augmented CB response to CO(2). CONCLUSIONS: Consistent with our hypothesis, impaired CB responses to hypoxia contribute in part to the blunted HVR in NMRs. Conversely, the HCVR and CB are more sensitive to CO(2) in NMRs. |
format | Online Article Text |
id | pubmed-9787741 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-97877412022-12-28 Carotid body responses to O(2) and CO(2) in hypoxia‐tolerant naked mole rats Peng, Ying‐Jie Nanduri, Jayasri Wang, Ning Khan, Shakil A. Pamenter, Matthew E. Prabhakar, Nanduri R. Acta Physiol (Oxf) Research Articles AIM: Naked mole rats (NMRs) exhibit blunted hypoxic (HVR) and hypercapnic ventilatory responses (HCVR). The mechanism(s) underlying these responses are largely unknown. We hypothesized that attenuated carotid body (CB) sensitivity to hypoxia and hypercapnia contributes to the near absence of ventilatory responses to hypoxia and CO(2) in NMRs. METHODS: We measured ex vivo CB sensory nerve activity, phrenic nerve activity (an estimation of ventilation), and blood gases in urethane‐anesthetized NMRs and C57BL/6 mice breathing normoxic, hypoxic, or hypercapnic gases. CB morphology, carbon monoxide, and H(2)S levels were also determined. RESULTS: Relative to mice, NMRs had blunted CB and HVR. Morphologically, NMRs have larger CBs, which contained more glomus cells than in mice. Furthermore, NMR glomus cells form a dispersed pattern compared to a clustered pattern in mice. Hemeoxygenase (HO)‐1 mRNA was elevated in NMR CBs, and an HO inhibitor increased CB sensitivity to hypoxia in NMRs. This increase was blocked by an H(2)S synthesis inhibitor, suggesting that interrupted gas messenger signaling contributes to the blunted CB responses and HVR in NMRs. Regarding hypercapnia, CB and ventilatory responses to CO(2) in NMRs were larger than in mice. Carbonic anhydrase (CA)‐2 mRNA is elevated in NMR CBs, and a CA inhibitor blocked the augmented CB response to CO(2) in NMRs, indicating CA activity regulates augmented CB response to CO(2). CONCLUSIONS: Consistent with our hypothesis, impaired CB responses to hypoxia contribute in part to the blunted HVR in NMRs. Conversely, the HCVR and CB are more sensitive to CO(2) in NMRs. John Wiley and Sons Inc. 2022-06-27 2022-10 /pmc/articles/PMC9787741/ /pubmed/35757963 http://dx.doi.org/10.1111/apha.13851 Text en © 2022 The Authors. Acta Physiologica published by John Wiley & Sons Ltd on behalf of Scandinavian Physiological Society. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Peng, Ying‐Jie Nanduri, Jayasri Wang, Ning Khan, Shakil A. Pamenter, Matthew E. Prabhakar, Nanduri R. Carotid body responses to O(2) and CO(2) in hypoxia‐tolerant naked mole rats |
title | Carotid body responses to O(2)
and CO(2)
in hypoxia‐tolerant naked mole rats |
title_full | Carotid body responses to O(2)
and CO(2)
in hypoxia‐tolerant naked mole rats |
title_fullStr | Carotid body responses to O(2)
and CO(2)
in hypoxia‐tolerant naked mole rats |
title_full_unstemmed | Carotid body responses to O(2)
and CO(2)
in hypoxia‐tolerant naked mole rats |
title_short | Carotid body responses to O(2)
and CO(2)
in hypoxia‐tolerant naked mole rats |
title_sort | carotid body responses to o(2)
and co(2)
in hypoxia‐tolerant naked mole rats |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9787741/ https://www.ncbi.nlm.nih.gov/pubmed/35757963 http://dx.doi.org/10.1111/apha.13851 |
work_keys_str_mv | AT pengyingjie carotidbodyresponsestoo2andco2inhypoxiatolerantnakedmolerats AT nandurijayasri carotidbodyresponsestoo2andco2inhypoxiatolerantnakedmolerats AT wangning carotidbodyresponsestoo2andco2inhypoxiatolerantnakedmolerats AT khanshakila carotidbodyresponsestoo2andco2inhypoxiatolerantnakedmolerats AT pamentermatthewe carotidbodyresponsestoo2andco2inhypoxiatolerantnakedmolerats AT prabhakarnandurir carotidbodyresponsestoo2andco2inhypoxiatolerantnakedmolerats |