Cargando…

Flow Characteristics of Heat and Mass for Nanofluid under Different Operating Temperatures over Wedge and Plate

Background and Purpose: Nanofluids are a new class of heat transfer fluids that are used for different heat transfer applications. The transport characteristics of these fluids not only depend upon flow conditions but also strongly depend on operating temperature. In respect of these facts, the prop...

Descripción completa

Detalles Bibliográficos
Autores principales: Rizwan, Muhammad, Hassan, Mohsan, Asjad, Muhammad Imran, Tag-ElDin, ElSayed M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9787794/
https://www.ncbi.nlm.nih.gov/pubmed/36557380
http://dx.doi.org/10.3390/mi13122080
Descripción
Sumario:Background and Purpose: Nanofluids are a new class of heat transfer fluids that are used for different heat transfer applications. The transport characteristics of these fluids not only depend upon flow conditions but also strongly depend on operating temperature. In respect of these facts, the properties of these fluids are modified to measure the temperature effects and used in the governing equations to see the heat and mass flow behavior. Design of Model: Consider the nanofluids which are synthesized by dispersing metallic oxides (SiO(2), Al(2)O(3)), carbon nanostructures (PEG-TGr, PEG-GnP), and nanoparticles in deionized water (DIW), with (0.025–0.1%) particle concentration over (30–50 °C) temperature range. The thermophysical properties of these fluids are modeled theoretically with the help of experimental data as a function of a temperature and volume fraction. These models are further used in transport equations for fluid flow over both wedge and plate. To get the solution, the equations are simplified in the shape of ordinary differential equations by applying the boundary layer and similarity transformations and then solved by the RK method. Results: The solution of the governing equation is found in the form of velocity and temperature expressions for both geometries and displayed graphically for discussion. Moreover, momentum and thermal boundary layer thicknesses, displacement, momentum thicknesses, the coefficient of skin friction, and Nusselt number are calculated numerically in tabular form. Finding: The maximum reduction and enhancement in velocity and temperature profile is found in the case of flow over the plate as compared to the wedge. The boundary layer parameters are increased in the case of flow over the plate than the wedge.