Cargando…

How Characters Are Learned Leaves Its Mark on the Neural Substrates of Chinese Reading

Understanding how the brain functions differently as one learns to read may shed light on the controversial nature of the reading ability of human being. Logographic writing system such as Chinese has been found to rely on specialized neural substrates beyond the reading network of alphabetic langua...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Jieyin, Mak, Hoi Yan, Wang, Jing, Cai, Qing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society for Neuroscience 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9787807/
https://www.ncbi.nlm.nih.gov/pubmed/36635247
http://dx.doi.org/10.1523/ENEURO.0111-22.2022
Descripción
Sumario:Understanding how the brain functions differently as one learns to read may shed light on the controversial nature of the reading ability of human being. Logographic writing system such as Chinese has been found to rely on specialized neural substrates beyond the reading network of alphabetic languages. The ability to read in Chinese has also been proposed to rely on writing skills. However, it was unclear whether the learning-related alteration of neural responses was language specific or resulted from the more reliance on writing practice during acquisition. This study investigated whether the emergence of typical logographic-specific regions relied on learning by writing. We taught proficient alphabetic language readers Chinese characters and used pre-test and post-test to identify changes in two critical stages of reading, namely, orthographic processing and orthographic-to-phonological mapping. Two typical left hemispheric areas for logographic reading showed increased responses to characters in the brains of proficient alphabetic readers after learning, regardless of whether the learning strategy involved writing practice. Moreover, learning strategy modulated the response magnitude or multivoxel patterns in the left superior parietal lobule, left middle frontal gyrus, and right fusiform gyrus, some of which were task dependent. The findings corroborated a limited role of writing in the emergence of logographic-specific reading network and suggested the heterogeneous nature of different brain regions in this network.