Cargando…
Integrating data types to estimate spatial patterns of avian migration across the Western Hemisphere
For many avian species, spatial migration patterns remain largely undescribed, especially across hemispheric extents. Recent advancements in tracking technologies and high‐resolution species distribution models (i.e., eBird Status and Trends products) provide new insights into migratory bird movemen...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9787853/ https://www.ncbi.nlm.nih.gov/pubmed/35588285 http://dx.doi.org/10.1002/eap.2679 |
_version_ | 1784858612902920192 |
---|---|
author | Meehan, Timothy D. Saunders, Sarah P. DeLuca, William V. Michel, Nicole L. Grand, Joanna Deppe, Jill L. Jimenez, Miguel F. Knight, Erika J. Seavy, Nathaniel E. Smith, Melanie A. Taylor, Lotem Witko, Chad Akresh, Michael E. Barber, David R. Bayne, Erin M. Beasley, James C. Belant, Jerrold L. Bierregaard, Richard O. Bildstein, Keith L. Boves, Than J. Brzorad, John N. Campbell, Steven P. Celis‐Murillo, Antonio Cooke, Hilary A. Domenech, Robert Goodrich, Laurie Gow, Elizabeth A. Haines, Aaron Hallworth, Michael T. Hill, Jason M. Holland, Amanda E. Jennings, Scott Kays, Roland King, D. Tommy Mackenzie, Stuart A. Marra, Peter P. McCabe, Rebecca A. McFarland, Kent P. McGrady, Michael J. Melcer, Ron Norris, D. Ryan Norvell, Russell E. Rhodes, Olin E. Rimmer, Christopher C. Scarpignato, Amy L. Shreading, Adam Watson, Jesse L. Wilsey, Chad B. |
author_facet | Meehan, Timothy D. Saunders, Sarah P. DeLuca, William V. Michel, Nicole L. Grand, Joanna Deppe, Jill L. Jimenez, Miguel F. Knight, Erika J. Seavy, Nathaniel E. Smith, Melanie A. Taylor, Lotem Witko, Chad Akresh, Michael E. Barber, David R. Bayne, Erin M. Beasley, James C. Belant, Jerrold L. Bierregaard, Richard O. Bildstein, Keith L. Boves, Than J. Brzorad, John N. Campbell, Steven P. Celis‐Murillo, Antonio Cooke, Hilary A. Domenech, Robert Goodrich, Laurie Gow, Elizabeth A. Haines, Aaron Hallworth, Michael T. Hill, Jason M. Holland, Amanda E. Jennings, Scott Kays, Roland King, D. Tommy Mackenzie, Stuart A. Marra, Peter P. McCabe, Rebecca A. McFarland, Kent P. McGrady, Michael J. Melcer, Ron Norris, D. Ryan Norvell, Russell E. Rhodes, Olin E. Rimmer, Christopher C. Scarpignato, Amy L. Shreading, Adam Watson, Jesse L. Wilsey, Chad B. |
author_sort | Meehan, Timothy D. |
collection | PubMed |
description | For many avian species, spatial migration patterns remain largely undescribed, especially across hemispheric extents. Recent advancements in tracking technologies and high‐resolution species distribution models (i.e., eBird Status and Trends products) provide new insights into migratory bird movements and offer a promising opportunity for integrating independent data sources to describe avian migration. Here, we present a three‐stage modeling framework for estimating spatial patterns of avian migration. First, we integrate tracking and band re‐encounter data to quantify migratory connectivity, defined as the relative proportions of individuals migrating between breeding and nonbreeding regions. Next, we use estimated connectivity proportions along with eBird occurrence probabilities to produce probabilistic least‐cost path (LCP) indices. In a final step, we use generalized additive mixed models (GAMMs) both to evaluate the ability of LCP indices to accurately predict (i.e., as a covariate) observed locations derived from tracking and band re‐encounter data sets versus pseudo‐absence locations during migratory periods and to create a fully integrated (i.e., eBird occurrence, LCP, and tracking/band re‐encounter data) spatial prediction index for mapping species‐specific seasonal migrations. To illustrate this approach, we apply this framework to describe seasonal migrations of 12 bird species across the Western Hemisphere during pre‐ and postbreeding migratory periods (i.e., spring and fall, respectively). We found that including LCP indices with eBird occurrence in GAMMs generally improved the ability to accurately predict observed migratory locations compared to models with eBird occurrence alone. Using three performance metrics, the eBird + LCP model demonstrated equivalent or superior fit relative to the eBird‐only model for 22 of 24 species–season GAMMs. In particular, the integrated index filled in spatial gaps for species with over‐water movements and those that migrated over land where there were few eBird sightings and, thus, low predictive ability of eBird occurrence probabilities (e.g., Amazonian rainforest in South America). This methodology of combining individual‐based seasonal movement data with temporally dynamic species distribution models provides a comprehensive approach to integrating multiple data types to describe broad‐scale spatial patterns of animal movement. Further development and customization of this approach will continue to advance knowledge about the full annual cycle and conservation of migratory birds. |
format | Online Article Text |
id | pubmed-9787853 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-97878532022-12-28 Integrating data types to estimate spatial patterns of avian migration across the Western Hemisphere Meehan, Timothy D. Saunders, Sarah P. DeLuca, William V. Michel, Nicole L. Grand, Joanna Deppe, Jill L. Jimenez, Miguel F. Knight, Erika J. Seavy, Nathaniel E. Smith, Melanie A. Taylor, Lotem Witko, Chad Akresh, Michael E. Barber, David R. Bayne, Erin M. Beasley, James C. Belant, Jerrold L. Bierregaard, Richard O. Bildstein, Keith L. Boves, Than J. Brzorad, John N. Campbell, Steven P. Celis‐Murillo, Antonio Cooke, Hilary A. Domenech, Robert Goodrich, Laurie Gow, Elizabeth A. Haines, Aaron Hallworth, Michael T. Hill, Jason M. Holland, Amanda E. Jennings, Scott Kays, Roland King, D. Tommy Mackenzie, Stuart A. Marra, Peter P. McCabe, Rebecca A. McFarland, Kent P. McGrady, Michael J. Melcer, Ron Norris, D. Ryan Norvell, Russell E. Rhodes, Olin E. Rimmer, Christopher C. Scarpignato, Amy L. Shreading, Adam Watson, Jesse L. Wilsey, Chad B. Ecol Appl Articles For many avian species, spatial migration patterns remain largely undescribed, especially across hemispheric extents. Recent advancements in tracking technologies and high‐resolution species distribution models (i.e., eBird Status and Trends products) provide new insights into migratory bird movements and offer a promising opportunity for integrating independent data sources to describe avian migration. Here, we present a three‐stage modeling framework for estimating spatial patterns of avian migration. First, we integrate tracking and band re‐encounter data to quantify migratory connectivity, defined as the relative proportions of individuals migrating between breeding and nonbreeding regions. Next, we use estimated connectivity proportions along with eBird occurrence probabilities to produce probabilistic least‐cost path (LCP) indices. In a final step, we use generalized additive mixed models (GAMMs) both to evaluate the ability of LCP indices to accurately predict (i.e., as a covariate) observed locations derived from tracking and band re‐encounter data sets versus pseudo‐absence locations during migratory periods and to create a fully integrated (i.e., eBird occurrence, LCP, and tracking/band re‐encounter data) spatial prediction index for mapping species‐specific seasonal migrations. To illustrate this approach, we apply this framework to describe seasonal migrations of 12 bird species across the Western Hemisphere during pre‐ and postbreeding migratory periods (i.e., spring and fall, respectively). We found that including LCP indices with eBird occurrence in GAMMs generally improved the ability to accurately predict observed migratory locations compared to models with eBird occurrence alone. Using three performance metrics, the eBird + LCP model demonstrated equivalent or superior fit relative to the eBird‐only model for 22 of 24 species–season GAMMs. In particular, the integrated index filled in spatial gaps for species with over‐water movements and those that migrated over land where there were few eBird sightings and, thus, low predictive ability of eBird occurrence probabilities (e.g., Amazonian rainforest in South America). This methodology of combining individual‐based seasonal movement data with temporally dynamic species distribution models provides a comprehensive approach to integrating multiple data types to describe broad‐scale spatial patterns of animal movement. Further development and customization of this approach will continue to advance knowledge about the full annual cycle and conservation of migratory birds. John Wiley & Sons, Inc. 2022-07-06 2022-10 /pmc/articles/PMC9787853/ /pubmed/35588285 http://dx.doi.org/10.1002/eap.2679 Text en © 2022 The Authors. Ecological Applications published by Wiley Periodicals LLC on behalf of The Ecological Society of America. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Articles Meehan, Timothy D. Saunders, Sarah P. DeLuca, William V. Michel, Nicole L. Grand, Joanna Deppe, Jill L. Jimenez, Miguel F. Knight, Erika J. Seavy, Nathaniel E. Smith, Melanie A. Taylor, Lotem Witko, Chad Akresh, Michael E. Barber, David R. Bayne, Erin M. Beasley, James C. Belant, Jerrold L. Bierregaard, Richard O. Bildstein, Keith L. Boves, Than J. Brzorad, John N. Campbell, Steven P. Celis‐Murillo, Antonio Cooke, Hilary A. Domenech, Robert Goodrich, Laurie Gow, Elizabeth A. Haines, Aaron Hallworth, Michael T. Hill, Jason M. Holland, Amanda E. Jennings, Scott Kays, Roland King, D. Tommy Mackenzie, Stuart A. Marra, Peter P. McCabe, Rebecca A. McFarland, Kent P. McGrady, Michael J. Melcer, Ron Norris, D. Ryan Norvell, Russell E. Rhodes, Olin E. Rimmer, Christopher C. Scarpignato, Amy L. Shreading, Adam Watson, Jesse L. Wilsey, Chad B. Integrating data types to estimate spatial patterns of avian migration across the Western Hemisphere |
title | Integrating data types to estimate spatial patterns of avian migration across the Western Hemisphere |
title_full | Integrating data types to estimate spatial patterns of avian migration across the Western Hemisphere |
title_fullStr | Integrating data types to estimate spatial patterns of avian migration across the Western Hemisphere |
title_full_unstemmed | Integrating data types to estimate spatial patterns of avian migration across the Western Hemisphere |
title_short | Integrating data types to estimate spatial patterns of avian migration across the Western Hemisphere |
title_sort | integrating data types to estimate spatial patterns of avian migration across the western hemisphere |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9787853/ https://www.ncbi.nlm.nih.gov/pubmed/35588285 http://dx.doi.org/10.1002/eap.2679 |
work_keys_str_mv | AT meehantimothyd integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT saunderssarahp integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT delucawilliamv integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT michelnicolel integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT grandjoanna integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT deppejilll integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT jimenezmiguelf integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT knighterikaj integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT seavynathaniele integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT smithmelaniea integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT taylorlotem integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT witkochad integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT akreshmichaele integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT barberdavidr integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT bayneerinm integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT beasleyjamesc integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT belantjerroldl integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT bierregaardrichardo integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT bildsteinkeithl integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT bovesthanj integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT brzoradjohnn integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT campbellstevenp integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT celismurilloantonio integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT cookehilarya integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT domenechrobert integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT goodrichlaurie integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT gowelizabetha integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT hainesaaron integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT hallworthmichaelt integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT hilljasonm integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT hollandamandae integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT jenningsscott integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT kaysroland integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT kingdtommy integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT mackenziestuarta integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT marrapeterp integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT mccaberebeccaa integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT mcfarlandkentp integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT mcgradymichaelj integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT melcerron integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT norrisdryan integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT norvellrusselle integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT rhodesoline integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT rimmerchristopherc integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT scarpignatoamyl integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT shreadingadam integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT watsonjessel integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere AT wilseychadb integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere |