Cargando…

Integrating data types to estimate spatial patterns of avian migration across the Western Hemisphere

For many avian species, spatial migration patterns remain largely undescribed, especially across hemispheric extents. Recent advancements in tracking technologies and high‐resolution species distribution models (i.e., eBird Status and Trends products) provide new insights into migratory bird movemen...

Descripción completa

Detalles Bibliográficos
Autores principales: Meehan, Timothy D., Saunders, Sarah P., DeLuca, William V., Michel, Nicole L., Grand, Joanna, Deppe, Jill L., Jimenez, Miguel F., Knight, Erika J., Seavy, Nathaniel E., Smith, Melanie A., Taylor, Lotem, Witko, Chad, Akresh, Michael E., Barber, David R., Bayne, Erin M., Beasley, James C., Belant, Jerrold L., Bierregaard, Richard O., Bildstein, Keith L., Boves, Than J., Brzorad, John N., Campbell, Steven P., Celis‐Murillo, Antonio, Cooke, Hilary A., Domenech, Robert, Goodrich, Laurie, Gow, Elizabeth A., Haines, Aaron, Hallworth, Michael T., Hill, Jason M., Holland, Amanda E., Jennings, Scott, Kays, Roland, King, D. Tommy, Mackenzie, Stuart A., Marra, Peter P., McCabe, Rebecca A., McFarland, Kent P., McGrady, Michael J., Melcer, Ron, Norris, D. Ryan, Norvell, Russell E., Rhodes, Olin E., Rimmer, Christopher C., Scarpignato, Amy L., Shreading, Adam, Watson, Jesse L., Wilsey, Chad B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9787853/
https://www.ncbi.nlm.nih.gov/pubmed/35588285
http://dx.doi.org/10.1002/eap.2679
_version_ 1784858612902920192
author Meehan, Timothy D.
Saunders, Sarah P.
DeLuca, William V.
Michel, Nicole L.
Grand, Joanna
Deppe, Jill L.
Jimenez, Miguel F.
Knight, Erika J.
Seavy, Nathaniel E.
Smith, Melanie A.
Taylor, Lotem
Witko, Chad
Akresh, Michael E.
Barber, David R.
Bayne, Erin M.
Beasley, James C.
Belant, Jerrold L.
Bierregaard, Richard O.
Bildstein, Keith L.
Boves, Than J.
Brzorad, John N.
Campbell, Steven P.
Celis‐Murillo, Antonio
Cooke, Hilary A.
Domenech, Robert
Goodrich, Laurie
Gow, Elizabeth A.
Haines, Aaron
Hallworth, Michael T.
Hill, Jason M.
Holland, Amanda E.
Jennings, Scott
Kays, Roland
King, D. Tommy
Mackenzie, Stuart A.
Marra, Peter P.
McCabe, Rebecca A.
McFarland, Kent P.
McGrady, Michael J.
Melcer, Ron
Norris, D. Ryan
Norvell, Russell E.
Rhodes, Olin E.
Rimmer, Christopher C.
Scarpignato, Amy L.
Shreading, Adam
Watson, Jesse L.
Wilsey, Chad B.
author_facet Meehan, Timothy D.
Saunders, Sarah P.
DeLuca, William V.
Michel, Nicole L.
Grand, Joanna
Deppe, Jill L.
Jimenez, Miguel F.
Knight, Erika J.
Seavy, Nathaniel E.
Smith, Melanie A.
Taylor, Lotem
Witko, Chad
Akresh, Michael E.
Barber, David R.
Bayne, Erin M.
Beasley, James C.
Belant, Jerrold L.
Bierregaard, Richard O.
Bildstein, Keith L.
Boves, Than J.
Brzorad, John N.
Campbell, Steven P.
Celis‐Murillo, Antonio
Cooke, Hilary A.
Domenech, Robert
Goodrich, Laurie
Gow, Elizabeth A.
Haines, Aaron
Hallworth, Michael T.
Hill, Jason M.
Holland, Amanda E.
Jennings, Scott
Kays, Roland
King, D. Tommy
Mackenzie, Stuart A.
Marra, Peter P.
McCabe, Rebecca A.
McFarland, Kent P.
McGrady, Michael J.
Melcer, Ron
Norris, D. Ryan
Norvell, Russell E.
Rhodes, Olin E.
Rimmer, Christopher C.
Scarpignato, Amy L.
Shreading, Adam
Watson, Jesse L.
Wilsey, Chad B.
author_sort Meehan, Timothy D.
collection PubMed
description For many avian species, spatial migration patterns remain largely undescribed, especially across hemispheric extents. Recent advancements in tracking technologies and high‐resolution species distribution models (i.e., eBird Status and Trends products) provide new insights into migratory bird movements and offer a promising opportunity for integrating independent data sources to describe avian migration. Here, we present a three‐stage modeling framework for estimating spatial patterns of avian migration. First, we integrate tracking and band re‐encounter data to quantify migratory connectivity, defined as the relative proportions of individuals migrating between breeding and nonbreeding regions. Next, we use estimated connectivity proportions along with eBird occurrence probabilities to produce probabilistic least‐cost path (LCP) indices. In a final step, we use generalized additive mixed models (GAMMs) both to evaluate the ability of LCP indices to accurately predict (i.e., as a covariate) observed locations derived from tracking and band re‐encounter data sets versus pseudo‐absence locations during migratory periods and to create a fully integrated (i.e., eBird occurrence, LCP, and tracking/band re‐encounter data) spatial prediction index for mapping species‐specific seasonal migrations. To illustrate this approach, we apply this framework to describe seasonal migrations of 12 bird species across the Western Hemisphere during pre‐ and postbreeding migratory periods (i.e., spring and fall, respectively). We found that including LCP indices with eBird occurrence in GAMMs generally improved the ability to accurately predict observed migratory locations compared to models with eBird occurrence alone. Using three performance metrics, the eBird + LCP model demonstrated equivalent or superior fit relative to the eBird‐only model for 22 of 24 species–season GAMMs. In particular, the integrated index filled in spatial gaps for species with over‐water movements and those that migrated over land where there were few eBird sightings and, thus, low predictive ability of eBird occurrence probabilities (e.g., Amazonian rainforest in South America). This methodology of combining individual‐based seasonal movement data with temporally dynamic species distribution models provides a comprehensive approach to integrating multiple data types to describe broad‐scale spatial patterns of animal movement. Further development and customization of this approach will continue to advance knowledge about the full annual cycle and conservation of migratory birds.
format Online
Article
Text
id pubmed-9787853
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley & Sons, Inc.
record_format MEDLINE/PubMed
spelling pubmed-97878532022-12-28 Integrating data types to estimate spatial patterns of avian migration across the Western Hemisphere Meehan, Timothy D. Saunders, Sarah P. DeLuca, William V. Michel, Nicole L. Grand, Joanna Deppe, Jill L. Jimenez, Miguel F. Knight, Erika J. Seavy, Nathaniel E. Smith, Melanie A. Taylor, Lotem Witko, Chad Akresh, Michael E. Barber, David R. Bayne, Erin M. Beasley, James C. Belant, Jerrold L. Bierregaard, Richard O. Bildstein, Keith L. Boves, Than J. Brzorad, John N. Campbell, Steven P. Celis‐Murillo, Antonio Cooke, Hilary A. Domenech, Robert Goodrich, Laurie Gow, Elizabeth A. Haines, Aaron Hallworth, Michael T. Hill, Jason M. Holland, Amanda E. Jennings, Scott Kays, Roland King, D. Tommy Mackenzie, Stuart A. Marra, Peter P. McCabe, Rebecca A. McFarland, Kent P. McGrady, Michael J. Melcer, Ron Norris, D. Ryan Norvell, Russell E. Rhodes, Olin E. Rimmer, Christopher C. Scarpignato, Amy L. Shreading, Adam Watson, Jesse L. Wilsey, Chad B. Ecol Appl Articles For many avian species, spatial migration patterns remain largely undescribed, especially across hemispheric extents. Recent advancements in tracking technologies and high‐resolution species distribution models (i.e., eBird Status and Trends products) provide new insights into migratory bird movements and offer a promising opportunity for integrating independent data sources to describe avian migration. Here, we present a three‐stage modeling framework for estimating spatial patterns of avian migration. First, we integrate tracking and band re‐encounter data to quantify migratory connectivity, defined as the relative proportions of individuals migrating between breeding and nonbreeding regions. Next, we use estimated connectivity proportions along with eBird occurrence probabilities to produce probabilistic least‐cost path (LCP) indices. In a final step, we use generalized additive mixed models (GAMMs) both to evaluate the ability of LCP indices to accurately predict (i.e., as a covariate) observed locations derived from tracking and band re‐encounter data sets versus pseudo‐absence locations during migratory periods and to create a fully integrated (i.e., eBird occurrence, LCP, and tracking/band re‐encounter data) spatial prediction index for mapping species‐specific seasonal migrations. To illustrate this approach, we apply this framework to describe seasonal migrations of 12 bird species across the Western Hemisphere during pre‐ and postbreeding migratory periods (i.e., spring and fall, respectively). We found that including LCP indices with eBird occurrence in GAMMs generally improved the ability to accurately predict observed migratory locations compared to models with eBird occurrence alone. Using three performance metrics, the eBird + LCP model demonstrated equivalent or superior fit relative to the eBird‐only model for 22 of 24 species–season GAMMs. In particular, the integrated index filled in spatial gaps for species with over‐water movements and those that migrated over land where there were few eBird sightings and, thus, low predictive ability of eBird occurrence probabilities (e.g., Amazonian rainforest in South America). This methodology of combining individual‐based seasonal movement data with temporally dynamic species distribution models provides a comprehensive approach to integrating multiple data types to describe broad‐scale spatial patterns of animal movement. Further development and customization of this approach will continue to advance knowledge about the full annual cycle and conservation of migratory birds. John Wiley & Sons, Inc. 2022-07-06 2022-10 /pmc/articles/PMC9787853/ /pubmed/35588285 http://dx.doi.org/10.1002/eap.2679 Text en © 2022 The Authors. Ecological Applications published by Wiley Periodicals LLC on behalf of The Ecological Society of America. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Articles
Meehan, Timothy D.
Saunders, Sarah P.
DeLuca, William V.
Michel, Nicole L.
Grand, Joanna
Deppe, Jill L.
Jimenez, Miguel F.
Knight, Erika J.
Seavy, Nathaniel E.
Smith, Melanie A.
Taylor, Lotem
Witko, Chad
Akresh, Michael E.
Barber, David R.
Bayne, Erin M.
Beasley, James C.
Belant, Jerrold L.
Bierregaard, Richard O.
Bildstein, Keith L.
Boves, Than J.
Brzorad, John N.
Campbell, Steven P.
Celis‐Murillo, Antonio
Cooke, Hilary A.
Domenech, Robert
Goodrich, Laurie
Gow, Elizabeth A.
Haines, Aaron
Hallworth, Michael T.
Hill, Jason M.
Holland, Amanda E.
Jennings, Scott
Kays, Roland
King, D. Tommy
Mackenzie, Stuart A.
Marra, Peter P.
McCabe, Rebecca A.
McFarland, Kent P.
McGrady, Michael J.
Melcer, Ron
Norris, D. Ryan
Norvell, Russell E.
Rhodes, Olin E.
Rimmer, Christopher C.
Scarpignato, Amy L.
Shreading, Adam
Watson, Jesse L.
Wilsey, Chad B.
Integrating data types to estimate spatial patterns of avian migration across the Western Hemisphere
title Integrating data types to estimate spatial patterns of avian migration across the Western Hemisphere
title_full Integrating data types to estimate spatial patterns of avian migration across the Western Hemisphere
title_fullStr Integrating data types to estimate spatial patterns of avian migration across the Western Hemisphere
title_full_unstemmed Integrating data types to estimate spatial patterns of avian migration across the Western Hemisphere
title_short Integrating data types to estimate spatial patterns of avian migration across the Western Hemisphere
title_sort integrating data types to estimate spatial patterns of avian migration across the western hemisphere
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9787853/
https://www.ncbi.nlm.nih.gov/pubmed/35588285
http://dx.doi.org/10.1002/eap.2679
work_keys_str_mv AT meehantimothyd integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT saunderssarahp integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT delucawilliamv integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT michelnicolel integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT grandjoanna integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT deppejilll integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT jimenezmiguelf integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT knighterikaj integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT seavynathaniele integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT smithmelaniea integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT taylorlotem integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT witkochad integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT akreshmichaele integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT barberdavidr integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT bayneerinm integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT beasleyjamesc integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT belantjerroldl integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT bierregaardrichardo integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT bildsteinkeithl integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT bovesthanj integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT brzoradjohnn integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT campbellstevenp integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT celismurilloantonio integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT cookehilarya integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT domenechrobert integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT goodrichlaurie integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT gowelizabetha integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT hainesaaron integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT hallworthmichaelt integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT hilljasonm integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT hollandamandae integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT jenningsscott integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT kaysroland integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT kingdtommy integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT mackenziestuarta integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT marrapeterp integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT mccaberebeccaa integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT mcfarlandkentp integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT mcgradymichaelj integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT melcerron integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT norrisdryan integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT norvellrusselle integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT rhodesoline integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT rimmerchristopherc integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT scarpignatoamyl integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT shreadingadam integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT watsonjessel integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere
AT wilseychadb integratingdatatypestoestimatespatialpatternsofavianmigrationacrossthewesternhemisphere