Cargando…
Can Gait Features Help in Differentiating Parkinson’s Disease Medication States and Severity Levels? A Machine Learning Approach
Parkinson’s disease (PD) is one of the most prevalent neurological diseases, described by complex clinical phenotypes. The manifestations of PD include both motor and non-motor symptoms. We constituted an experimental protocol for the assessment of PD motor signs of lower extremities. Using a pair o...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9787905/ https://www.ncbi.nlm.nih.gov/pubmed/36560313 http://dx.doi.org/10.3390/s22249937 |
_version_ | 1784858625432354816 |
---|---|
author | Chatzaki, Chariklia Skaramagkas, Vasileios Kefalopoulou, Zinovia Tachos, Nikolaos Kostikis, Nicholas Kanellos, Foivos Triantafyllou, Eleftherios Chroni, Elisabeth Fotiadis, Dimitrios I. Tsiknakis, Manolis |
author_facet | Chatzaki, Chariklia Skaramagkas, Vasileios Kefalopoulou, Zinovia Tachos, Nikolaos Kostikis, Nicholas Kanellos, Foivos Triantafyllou, Eleftherios Chroni, Elisabeth Fotiadis, Dimitrios I. Tsiknakis, Manolis |
author_sort | Chatzaki, Chariklia |
collection | PubMed |
description | Parkinson’s disease (PD) is one of the most prevalent neurological diseases, described by complex clinical phenotypes. The manifestations of PD include both motor and non-motor symptoms. We constituted an experimental protocol for the assessment of PD motor signs of lower extremities. Using a pair of sensor insoles, data were recorded from PD patients, Elderly and Adult groups. Assessment of PD patients has been performed by neurologists specialized in movement disorders using the Movement Disorder Society—Unified Parkinson’s Disease Rating Scale (MDS-UPDRS)-Part III: Motor Examination, on both ON and OFF medication states. Using as a reference point the quantified metrics of MDS-UPDRS-Part III, severity levels were explored by classifying normal, mild, moderate, and severe levels of PD. Elaborating the recorded gait data, 18 temporal and spatial characteristics have been extracted. Subsequently, feature selection techniques were applied to reveal the dominant features to be used for four classification tasks. Specifically, for identifying relations between the spatial and temporal gait features on: PD and non-PD groups; PD, Elderly and Adults groups; PD and ON/OFF medication states; MDS-UPDRS: Part III and PD severity levels. AdaBoost, Extra Trees, and Random Forest classifiers, were trained and tested. Results showed a recognition accuracy of 88%, 73% and 81% for, the PD and non-PD groups, PD-related medication states, and PD severity levels relevant to MDS-UPDRS: Part III ratings, respectively. |
format | Online Article Text |
id | pubmed-9787905 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-97879052022-12-24 Can Gait Features Help in Differentiating Parkinson’s Disease Medication States and Severity Levels? A Machine Learning Approach Chatzaki, Chariklia Skaramagkas, Vasileios Kefalopoulou, Zinovia Tachos, Nikolaos Kostikis, Nicholas Kanellos, Foivos Triantafyllou, Eleftherios Chroni, Elisabeth Fotiadis, Dimitrios I. Tsiknakis, Manolis Sensors (Basel) Article Parkinson’s disease (PD) is one of the most prevalent neurological diseases, described by complex clinical phenotypes. The manifestations of PD include both motor and non-motor symptoms. We constituted an experimental protocol for the assessment of PD motor signs of lower extremities. Using a pair of sensor insoles, data were recorded from PD patients, Elderly and Adult groups. Assessment of PD patients has been performed by neurologists specialized in movement disorders using the Movement Disorder Society—Unified Parkinson’s Disease Rating Scale (MDS-UPDRS)-Part III: Motor Examination, on both ON and OFF medication states. Using as a reference point the quantified metrics of MDS-UPDRS-Part III, severity levels were explored by classifying normal, mild, moderate, and severe levels of PD. Elaborating the recorded gait data, 18 temporal and spatial characteristics have been extracted. Subsequently, feature selection techniques were applied to reveal the dominant features to be used for four classification tasks. Specifically, for identifying relations between the spatial and temporal gait features on: PD and non-PD groups; PD, Elderly and Adults groups; PD and ON/OFF medication states; MDS-UPDRS: Part III and PD severity levels. AdaBoost, Extra Trees, and Random Forest classifiers, were trained and tested. Results showed a recognition accuracy of 88%, 73% and 81% for, the PD and non-PD groups, PD-related medication states, and PD severity levels relevant to MDS-UPDRS: Part III ratings, respectively. MDPI 2022-12-16 /pmc/articles/PMC9787905/ /pubmed/36560313 http://dx.doi.org/10.3390/s22249937 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chatzaki, Chariklia Skaramagkas, Vasileios Kefalopoulou, Zinovia Tachos, Nikolaos Kostikis, Nicholas Kanellos, Foivos Triantafyllou, Eleftherios Chroni, Elisabeth Fotiadis, Dimitrios I. Tsiknakis, Manolis Can Gait Features Help in Differentiating Parkinson’s Disease Medication States and Severity Levels? A Machine Learning Approach |
title | Can Gait Features Help in Differentiating Parkinson’s Disease Medication States and Severity Levels? A Machine Learning Approach |
title_full | Can Gait Features Help in Differentiating Parkinson’s Disease Medication States and Severity Levels? A Machine Learning Approach |
title_fullStr | Can Gait Features Help in Differentiating Parkinson’s Disease Medication States and Severity Levels? A Machine Learning Approach |
title_full_unstemmed | Can Gait Features Help in Differentiating Parkinson’s Disease Medication States and Severity Levels? A Machine Learning Approach |
title_short | Can Gait Features Help in Differentiating Parkinson’s Disease Medication States and Severity Levels? A Machine Learning Approach |
title_sort | can gait features help in differentiating parkinson’s disease medication states and severity levels? a machine learning approach |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9787905/ https://www.ncbi.nlm.nih.gov/pubmed/36560313 http://dx.doi.org/10.3390/s22249937 |
work_keys_str_mv | AT chatzakichariklia cangaitfeatureshelpindifferentiatingparkinsonsdiseasemedicationstatesandseveritylevelsamachinelearningapproach AT skaramagkasvasileios cangaitfeatureshelpindifferentiatingparkinsonsdiseasemedicationstatesandseveritylevelsamachinelearningapproach AT kefalopoulouzinovia cangaitfeatureshelpindifferentiatingparkinsonsdiseasemedicationstatesandseveritylevelsamachinelearningapproach AT tachosnikolaos cangaitfeatureshelpindifferentiatingparkinsonsdiseasemedicationstatesandseveritylevelsamachinelearningapproach AT kostikisnicholas cangaitfeatureshelpindifferentiatingparkinsonsdiseasemedicationstatesandseveritylevelsamachinelearningapproach AT kanellosfoivos cangaitfeatureshelpindifferentiatingparkinsonsdiseasemedicationstatesandseveritylevelsamachinelearningapproach AT triantafylloueleftherios cangaitfeatureshelpindifferentiatingparkinsonsdiseasemedicationstatesandseveritylevelsamachinelearningapproach AT chronielisabeth cangaitfeatureshelpindifferentiatingparkinsonsdiseasemedicationstatesandseveritylevelsamachinelearningapproach AT fotiadisdimitriosi cangaitfeatureshelpindifferentiatingparkinsonsdiseasemedicationstatesandseveritylevelsamachinelearningapproach AT tsiknakismanolis cangaitfeatureshelpindifferentiatingparkinsonsdiseasemedicationstatesandseveritylevelsamachinelearningapproach |