Cargando…
Quantifying Northern High Latitude Gross Primary Productivity (GPP) Using Carbonyl Sulfide (OCS)
The northern high latitude (NHL, 40°N to 90°N) is where the second peak region of gross primary productivity (GPP) other than the tropics. The summer NHL GPP is about 80% of the tropical peak, but both regions are still highly uncertain (Norton et al. 2019, https://doi.org/10.5194/bg-16-3069-2019)....
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9787914/ https://www.ncbi.nlm.nih.gov/pubmed/36590828 http://dx.doi.org/10.1029/2021GB007216 |
_version_ | 1784858627404726272 |
---|---|
author | Kuai, Le Parazoo, Nicholas C. Shi, Mingjie Miller, Charles E. Baker, Ian Bloom, Anthony A. Bowman, Kevin Lee, Meemong Zeng, Zhao‐Cheng Commane, Roisin Montzka, Stephen A. Berry, Joe Sweeney, Colm Miller, John B. Yung, Yuk L. |
author_facet | Kuai, Le Parazoo, Nicholas C. Shi, Mingjie Miller, Charles E. Baker, Ian Bloom, Anthony A. Bowman, Kevin Lee, Meemong Zeng, Zhao‐Cheng Commane, Roisin Montzka, Stephen A. Berry, Joe Sweeney, Colm Miller, John B. Yung, Yuk L. |
author_sort | Kuai, Le |
collection | PubMed |
description | The northern high latitude (NHL, 40°N to 90°N) is where the second peak region of gross primary productivity (GPP) other than the tropics. The summer NHL GPP is about 80% of the tropical peak, but both regions are still highly uncertain (Norton et al. 2019, https://doi.org/10.5194/bg-16-3069-2019). Carbonyl sulfide (OCS) provides an important proxy for photosynthetic carbon uptake. Here we optimize the OCS plant uptake fluxes across the NHL by fitting atmospheric concentration simulation with the GEOS‐CHEM global transport model to the aircraft profiles acquired over Alaska during NASA's Carbon in Arctic Reservoirs Vulnerability Experiment (2012–2015). We use the empirical biome‐specific linear relationship between OCS plant uptake flux and GPP to derive the six plant uptake OCS fluxes from different GPP data. Such GPP‐based fluxes are used to drive the concentration simulations. We evaluate the simulations against the independent observations at two ground sites of Alaska. The optimized OCS fluxes suggest the NHL plant uptake OCS flux of −247 Gg S year(−1), about 25% stronger than the ensemble mean of the six GPP‐based OCS fluxes. GPP‐based OCS fluxes systematically underestimate the peak growing season across the NHL, while a subset of models predict early start of season in Alaska, consistent with previous studies of net ecosystem exchange. The OCS optimized GPP of 34 PgC yr(−1) for NHL is also about 25% more than the ensembles mean from six GPP data. Further work is needed to fully understand the environmental and biotic drivers and quantify their rate of photosynthetic carbon uptake in Arctic ecosystems. |
format | Online Article Text |
id | pubmed-9787914 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-97879142022-12-28 Quantifying Northern High Latitude Gross Primary Productivity (GPP) Using Carbonyl Sulfide (OCS) Kuai, Le Parazoo, Nicholas C. Shi, Mingjie Miller, Charles E. Baker, Ian Bloom, Anthony A. Bowman, Kevin Lee, Meemong Zeng, Zhao‐Cheng Commane, Roisin Montzka, Stephen A. Berry, Joe Sweeney, Colm Miller, John B. Yung, Yuk L. Global Biogeochem Cycles Research Article The northern high latitude (NHL, 40°N to 90°N) is where the second peak region of gross primary productivity (GPP) other than the tropics. The summer NHL GPP is about 80% of the tropical peak, but both regions are still highly uncertain (Norton et al. 2019, https://doi.org/10.5194/bg-16-3069-2019). Carbonyl sulfide (OCS) provides an important proxy for photosynthetic carbon uptake. Here we optimize the OCS plant uptake fluxes across the NHL by fitting atmospheric concentration simulation with the GEOS‐CHEM global transport model to the aircraft profiles acquired over Alaska during NASA's Carbon in Arctic Reservoirs Vulnerability Experiment (2012–2015). We use the empirical biome‐specific linear relationship between OCS plant uptake flux and GPP to derive the six plant uptake OCS fluxes from different GPP data. Such GPP‐based fluxes are used to drive the concentration simulations. We evaluate the simulations against the independent observations at two ground sites of Alaska. The optimized OCS fluxes suggest the NHL plant uptake OCS flux of −247 Gg S year(−1), about 25% stronger than the ensemble mean of the six GPP‐based OCS fluxes. GPP‐based OCS fluxes systematically underestimate the peak growing season across the NHL, while a subset of models predict early start of season in Alaska, consistent with previous studies of net ecosystem exchange. The OCS optimized GPP of 34 PgC yr(−1) for NHL is also about 25% more than the ensembles mean from six GPP data. Further work is needed to fully understand the environmental and biotic drivers and quantify their rate of photosynthetic carbon uptake in Arctic ecosystems. John Wiley and Sons Inc. 2022-09-07 2022-09 /pmc/articles/PMC9787914/ /pubmed/36590828 http://dx.doi.org/10.1029/2021GB007216 Text en © 2022 Jet Propulsion Laboratory. California Institute of Technology. Government sponsorship acknowledged. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Research Article Kuai, Le Parazoo, Nicholas C. Shi, Mingjie Miller, Charles E. Baker, Ian Bloom, Anthony A. Bowman, Kevin Lee, Meemong Zeng, Zhao‐Cheng Commane, Roisin Montzka, Stephen A. Berry, Joe Sweeney, Colm Miller, John B. Yung, Yuk L. Quantifying Northern High Latitude Gross Primary Productivity (GPP) Using Carbonyl Sulfide (OCS) |
title | Quantifying Northern High Latitude Gross Primary Productivity (GPP) Using Carbonyl Sulfide (OCS) |
title_full | Quantifying Northern High Latitude Gross Primary Productivity (GPP) Using Carbonyl Sulfide (OCS) |
title_fullStr | Quantifying Northern High Latitude Gross Primary Productivity (GPP) Using Carbonyl Sulfide (OCS) |
title_full_unstemmed | Quantifying Northern High Latitude Gross Primary Productivity (GPP) Using Carbonyl Sulfide (OCS) |
title_short | Quantifying Northern High Latitude Gross Primary Productivity (GPP) Using Carbonyl Sulfide (OCS) |
title_sort | quantifying northern high latitude gross primary productivity (gpp) using carbonyl sulfide (ocs) |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9787914/ https://www.ncbi.nlm.nih.gov/pubmed/36590828 http://dx.doi.org/10.1029/2021GB007216 |
work_keys_str_mv | AT kuaile quantifyingnorthernhighlatitudegrossprimaryproductivitygppusingcarbonylsulfideocs AT parazoonicholasc quantifyingnorthernhighlatitudegrossprimaryproductivitygppusingcarbonylsulfideocs AT shimingjie quantifyingnorthernhighlatitudegrossprimaryproductivitygppusingcarbonylsulfideocs AT millercharlese quantifyingnorthernhighlatitudegrossprimaryproductivitygppusingcarbonylsulfideocs AT bakerian quantifyingnorthernhighlatitudegrossprimaryproductivitygppusingcarbonylsulfideocs AT bloomanthonya quantifyingnorthernhighlatitudegrossprimaryproductivitygppusingcarbonylsulfideocs AT bowmankevin quantifyingnorthernhighlatitudegrossprimaryproductivitygppusingcarbonylsulfideocs AT leemeemong quantifyingnorthernhighlatitudegrossprimaryproductivitygppusingcarbonylsulfideocs AT zengzhaocheng quantifyingnorthernhighlatitudegrossprimaryproductivitygppusingcarbonylsulfideocs AT commaneroisin quantifyingnorthernhighlatitudegrossprimaryproductivitygppusingcarbonylsulfideocs AT montzkastephena quantifyingnorthernhighlatitudegrossprimaryproductivitygppusingcarbonylsulfideocs AT berryjoe quantifyingnorthernhighlatitudegrossprimaryproductivitygppusingcarbonylsulfideocs AT sweeneycolm quantifyingnorthernhighlatitudegrossprimaryproductivitygppusingcarbonylsulfideocs AT millerjohnb quantifyingnorthernhighlatitudegrossprimaryproductivitygppusingcarbonylsulfideocs AT yungyukl quantifyingnorthernhighlatitudegrossprimaryproductivitygppusingcarbonylsulfideocs |