Cargando…

Molecular Epidemiology of Escherichia coli with Resistance against Third-Generation Cephalosporines Isolated from Deployed German Soldiers—A Retrospective Assessment after Deployments to the African Sahel Region and Other Sites between 2007 and 2016

Colonization and infection with bacteria with acquired antibiotic resistance are among the risks for soldiers on international deployments. Enterobacterales with resistance against third-generation cephalosporines are amongst the most frequently imported microorganisms. To contribute to the scarcely...

Descripción completa

Detalles Bibliográficos
Autores principales: Pankok, Frederik, Fuchs, Frieder, Loderstädt, Ulrike, Kaase, Martin, Balczun, Carsten, Scheithauer, Simone, Frickmann, Hagen, Hagen, Ralf Matthias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788009/
https://www.ncbi.nlm.nih.gov/pubmed/36557701
http://dx.doi.org/10.3390/microorganisms10122448
Descripción
Sumario:Colonization and infection with bacteria with acquired antibiotic resistance are among the risks for soldiers on international deployments. Enterobacterales with resistance against third-generation cephalosporines are amongst the most frequently imported microorganisms. To contribute to the scarcely available epidemiological knowledge on deployment-associated resistance migration, we assessed the molecular epidemiology of third-generation cephalosporine-resistant Escherichia coli isolated between 2007 and 2016 from German soldiers after deployments, with a particular focus on the African Sahel region. A total of 51 third-generation cephalosporine-resistant E. coli isolated from 51 military returnees from deployment collected during the assessment period between 2007 and 2016 were subjected to short-read next-generation sequencing analysis. Returnees from the Sahel region (Djibouti, Mali, South Sudan, Sudan, Sudan, and Uganda) comprised a proportion of 52.9% (27/51). Repeatedly isolated sequence types according to the Warwick University scheme from returnees from the Sahel region were ST38, ST131, and ST648, confirming previous epidemiological assessments from various sub-Saharan African regions. Locally prevalent resistance genes in isolates from returnees from the Sahel region associated with third-generation resistance were bla(CTX-M-15), bla(CTX-M-27), bla(CTX-M-1), bla(TEM-169), bla(CTX-M-14), bla(CTX-M-99)-like, bla(CTX-M-125), bla(SHV-12), and bla(DHA-1), while virulence genes were east1, sat, and tsh in declining order of frequency of occurrence each. In line with phenotypically observed high resistance rates for aminoglycosides and trimethoprim/sulfamethoxazole, multiple associated resistance genes were observed. A similar, slightly more diverse situation was recorded for the other deployment sites. In summary, this assessment provides first next-generation sequencing-based epidemiological data on third-generation cephalosporine-resistant E. coli imported by deployed German soldiers with a particular focus on deployments to the Sahel region, thus serving as a small sentinel. The detected sequence types are well in line with the results from previous epidemiological assessments in sub-Saharan Africa.