Cargando…
A Single-Cell Atlas of the Atherosclerotic Plaque in the Femoral Artery and the Heterogeneity in Macrophage Subtypes between Carotid and Femoral Atherosclerosis
Atherosclerosis of femoral arteries can cause the insufficient blood supply to the lower limbs and lead to gangrenous ulcers and other symptoms. Atherosclerosis and inflammatory factors are significantly different from other plaques. Therefore, it is crucial to observe the cellular composition of th...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788114/ https://www.ncbi.nlm.nih.gov/pubmed/36547462 http://dx.doi.org/10.3390/jcdd9120465 |
Sumario: | Atherosclerosis of femoral arteries can cause the insufficient blood supply to the lower limbs and lead to gangrenous ulcers and other symptoms. Atherosclerosis and inflammatory factors are significantly different from other plaques. Therefore, it is crucial to observe the cellular composition of the femoral atherosclerotic plaque and identify plaque heterogeneity in other arteries. To this end, we performed single-cell sequencing of a human femoral artery plaque. We identified 14 cell types, including endothelial cells, smooth muscle cells, monocytes, three macrophages with four different subtypes of foam cells, three T cells, natural killer cells, and B cells. We then downloaded single-cell sequencing data of carotid atherosclerosis from GEO, which were compared with the one femoral sample. We identified similar cell types, but the femoral artery had significantly more nonspecific immune cells and fewer specific immune cells than the carotid artery. We further compared the differences in the proportion of inflammatory macrophages, and resident macrophages, and the proportion of inflammatory macrophages was greater within the carotid artery. Through comparing one femoral sequencing sample with carotid samples from public datasets, our study reveals the single-cell map of the femoral artery and the heterogeneity of carotid and femoral arteries at the cellular level, laying the foundation for mechanistic and pharmacological studies of the femoral artery. |
---|