Cargando…

TLR9 signalling activation via direct ligation and its functional consequences in CD4 + T cells

CpG Oligodeoxynucleotides (ODNs) are established TLR9 ligands; however, their functional responses in CD4+ T cells are believed to be independent of TLR9 and MyD88. We studied ligand‐receptor interactions of ODN 2216 and TLR9 in human CD4+ T cells and assessed their consequences in terms of TLR9 sig...

Descripción completa

Detalles Bibliográficos
Autores principales: Sharma, Ravi Kumar, Sharma, Jyoti, Kumar, Rajendra, Badal, Darshan, Pattekar, Ajinkya, Sehgal, Shobha, Gupta, Amod, Jain, Pooja, Sachdeva, Naresh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788197/
https://www.ncbi.nlm.nih.gov/pubmed/37406035
http://dx.doi.org/10.1111/sji.13214
Descripción
Sumario:CpG Oligodeoxynucleotides (ODNs) are established TLR9 ligands; however, their functional responses in CD4+ T cells are believed to be independent of TLR9 and MyD88. We studied ligand‐receptor interactions of ODN 2216 and TLR9 in human CD4+ T cells and assessed their consequences in terms of TLR9 signalling and cell phenotype. We demonstrated that the uptake of ODN 2216, a synthetic TLR9 agonist, is controlled by TLR9 signalling molecules and results in an increase in the expression of TLR9 signalling molecules, regulated via a feedback mechanism. Next, the uptake of ODN 2216 resulted in TLR9 signalling dependent but MyD88 independent increase in expression of TGF‐β. Finally, ODN 2216 treated CD4+ T cells showed an anti‐inflammatory phenotype that was similar to Th3 type of regulatory T cells. These Th3‐like cells were able to suppress the proliferation of untreated CD4+ T cells. Collectively, our results demonstrate a direct and interdependent relationship between ODN 2216 uptake and TLR9 signalling in CD4+ T cells. Our findings thus pave the way for future research to explore direct modulation of adaptive immune cells, using innate immune ligands, to subvert exaggerated inflammatory responses.