Cargando…

Biodegradation of Free Gossypol by Helicoverpa armigera Carboxylesterase Expressed in Pichia pastoris

Gossypol is a polyphenolic toxic secondary metabolite derived from cotton. Free gossypol in cotton meal is remarkably harmful to animals. Furthermore, microbial degradation of gossypol produces metabolites that reduce feed quality. We adopted an enzymatic method to degrade free gossypol safely and e...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Li, Yang, Xiaolong, Huang, Rongzheng, Nie, Cunxi, Niu, Junli, Chen, Cheng, Zhang, Wenju
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788223/
https://www.ncbi.nlm.nih.gov/pubmed/36548713
http://dx.doi.org/10.3390/toxins14120816
Descripción
Sumario:Gossypol is a polyphenolic toxic secondary metabolite derived from cotton. Free gossypol in cotton meal is remarkably harmful to animals. Furthermore, microbial degradation of gossypol produces metabolites that reduce feed quality. We adopted an enzymatic method to degrade free gossypol safely and effectively. We cloned the gene cce001a encoding carboxylesterase (CarE) into pPICZαA and transformed it into Pichia pastoris GS115. The target protein was successfully obtained, and CarE CCE001a could effectively degrade free gossypol with a degradation rate of 89%. When esterase was added, the exposed toxic groups of gossypol reacted with different amino acids and amines to form bound gossypol, generating substances with (M + H) m/z ratios of 560.15, 600.25, and 713.46. The molecular formula was C(27)H(28)O(13), C(34)H(36)N(2)O(6), and C(47)H(59)N(3)O(3). The observed instability of the hydroxyl groups caused the substitution and shedding of the group, forming a substance with m/z of 488.26 and molecular formula C(31)H(36)O(5). These properties render the CarE CCE001a a valid candidate for the detoxification of cotton meal. Furthermore, the findings help elucidate the degradation process of gossypol in vitro.