Cargando…
Optimized High-Content Imaging Screening Quantifying Micronuclei Formation in Polymer-Treated HaCaT Keratinocytes
Research on nano- and micro-plastic particles (NMPPs) suggests their potential threat to human health. Some studies have even suggested genotoxic effects of NMPP exposure, such as micronuclei (MN) formation, while others found the opposite. To clarify the ability of NMPP to induce MN formation, we u...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788386/ https://www.ncbi.nlm.nih.gov/pubmed/36558315 http://dx.doi.org/10.3390/nano12244463 |
_version_ | 1784858741907128320 |
---|---|
author | Saadati, Fariba da Silva Brito, Walison Augusto Emmert, Steffen Bekeschus, Sander |
author_facet | Saadati, Fariba da Silva Brito, Walison Augusto Emmert, Steffen Bekeschus, Sander |
author_sort | Saadati, Fariba |
collection | PubMed |
description | Research on nano- and micro-plastic particles (NMPPs) suggests their potential threat to human health. Some studies have even suggested genotoxic effects of NMPP exposure, such as micronuclei (MN) formation, while others found the opposite. To clarify the ability of NMPP to induce MN formation, we used non-malignant HaCaT keratinocytes and exposed these to a variety of polystyrene (PS) and poly methyl methacrylate (PMMA) particle types at different concentrations and three different sizes. Investigations were performed following acute (one day) and chronic exposure (five weeks) against cytotoxic (amino-modified NMPPs) and genotoxic (methyl methanesulfonate, MMS) positive controls. An optimized high-content imaging workflow was established strictly according to OECD guidelines for analysis. Algorithm-based object segmentation and MN identification led to computer-driven, unsupervised quantitative image analysis results on MN frequencies among the different conditions and thousands of cells per condition. This could only be realized using accutase, allowing for partial cell detachment for optimal identification of bi-nucleated cells. Cytotoxic amino-modified particles were not genotoxic; MMS was both. During acute and long-term studies, PS and PMMA particles were neither toxic nor increased MN formation, except for 1000 nm PS particles at the highest concentration of unphysiological 100 µg/mL. Interestingly, ROS formation was significantly decreased in this condition. Hence, most non-charged polymer particles were neither toxic nor genotoxic, while aminated particles were toxic but not genotoxic. Altogether, we present an optimized quantitative imaging workflow applied to a timely research question in environmental toxicity. |
format | Online Article Text |
id | pubmed-9788386 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-97883862022-12-24 Optimized High-Content Imaging Screening Quantifying Micronuclei Formation in Polymer-Treated HaCaT Keratinocytes Saadati, Fariba da Silva Brito, Walison Augusto Emmert, Steffen Bekeschus, Sander Nanomaterials (Basel) Article Research on nano- and micro-plastic particles (NMPPs) suggests their potential threat to human health. Some studies have even suggested genotoxic effects of NMPP exposure, such as micronuclei (MN) formation, while others found the opposite. To clarify the ability of NMPP to induce MN formation, we used non-malignant HaCaT keratinocytes and exposed these to a variety of polystyrene (PS) and poly methyl methacrylate (PMMA) particle types at different concentrations and three different sizes. Investigations were performed following acute (one day) and chronic exposure (five weeks) against cytotoxic (amino-modified NMPPs) and genotoxic (methyl methanesulfonate, MMS) positive controls. An optimized high-content imaging workflow was established strictly according to OECD guidelines for analysis. Algorithm-based object segmentation and MN identification led to computer-driven, unsupervised quantitative image analysis results on MN frequencies among the different conditions and thousands of cells per condition. This could only be realized using accutase, allowing for partial cell detachment for optimal identification of bi-nucleated cells. Cytotoxic amino-modified particles were not genotoxic; MMS was both. During acute and long-term studies, PS and PMMA particles were neither toxic nor increased MN formation, except for 1000 nm PS particles at the highest concentration of unphysiological 100 µg/mL. Interestingly, ROS formation was significantly decreased in this condition. Hence, most non-charged polymer particles were neither toxic nor genotoxic, while aminated particles were toxic but not genotoxic. Altogether, we present an optimized quantitative imaging workflow applied to a timely research question in environmental toxicity. MDPI 2022-12-15 /pmc/articles/PMC9788386/ /pubmed/36558315 http://dx.doi.org/10.3390/nano12244463 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Saadati, Fariba da Silva Brito, Walison Augusto Emmert, Steffen Bekeschus, Sander Optimized High-Content Imaging Screening Quantifying Micronuclei Formation in Polymer-Treated HaCaT Keratinocytes |
title | Optimized High-Content Imaging Screening Quantifying Micronuclei Formation in Polymer-Treated HaCaT Keratinocytes |
title_full | Optimized High-Content Imaging Screening Quantifying Micronuclei Formation in Polymer-Treated HaCaT Keratinocytes |
title_fullStr | Optimized High-Content Imaging Screening Quantifying Micronuclei Formation in Polymer-Treated HaCaT Keratinocytes |
title_full_unstemmed | Optimized High-Content Imaging Screening Quantifying Micronuclei Formation in Polymer-Treated HaCaT Keratinocytes |
title_short | Optimized High-Content Imaging Screening Quantifying Micronuclei Formation in Polymer-Treated HaCaT Keratinocytes |
title_sort | optimized high-content imaging screening quantifying micronuclei formation in polymer-treated hacat keratinocytes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788386/ https://www.ncbi.nlm.nih.gov/pubmed/36558315 http://dx.doi.org/10.3390/nano12244463 |
work_keys_str_mv | AT saadatifariba optimizedhighcontentimagingscreeningquantifyingmicronucleiformationinpolymertreatedhacatkeratinocytes AT dasilvabritowalisonaugusto optimizedhighcontentimagingscreeningquantifyingmicronucleiformationinpolymertreatedhacatkeratinocytes AT emmertsteffen optimizedhighcontentimagingscreeningquantifyingmicronucleiformationinpolymertreatedhacatkeratinocytes AT bekeschussander optimizedhighcontentimagingscreeningquantifyingmicronucleiformationinpolymertreatedhacatkeratinocytes |