Cargando…
End-to-End One-Shot Path-Planning Algorithm for an Autonomous Vehicle Based on a Convolutional Neural Network Considering Traversability Cost
Path planning plays an important role in navigation and motion planning for robotics and automated driving applications. Most existing methods use iterative frameworks to calculate and plan the optimal path from the starting point to the endpoint. Iterative planning algorithms can be slow on large m...
Autores principales: | Bian, Tongfei, Xing, Yang, Zolotas, Argyrios |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788420/ https://www.ncbi.nlm.nih.gov/pubmed/36560049 http://dx.doi.org/10.3390/s22249682 |
Ejemplares similares
-
One-Shot Multi-Path Planning Using Fully Convolutional Networks in a Comparison to Other Algorithms
por: Kulvicius, Tomas, et al.
Publicado: (2021) -
End-to-End Multimodal Sensor Dataset Collection Framework for Autonomous Vehicles
por: Gu, Junyi, et al.
Publicado: (2023) -
Autonomous guided vehicles: methods and models for optimal path planning
por: Fazlollahtabar, Hamed, et al.
Publicado: (2015) -
Research on Path Planning and Path Tracking Control of Autonomous Vehicles Based on Improved APF and SMC
por: Zhang, Yong, et al.
Publicado: (2023) -
An Improved Genetic Algorithm for Path-Planning of Unmanned Surface Vehicle
por: Xin, Junfeng, et al.
Publicado: (2019)