Cargando…

Multiple Novel Human Norovirus Recombinants Identified in Wastewater in Pretoria, South Africa by Next-Generation Sequencing

The genogroup II genotype 4 (GII.4) noroviruses are a major cause of viral gastroenteritis. Since the emergence of the Sydney_2012 variant, no novel norovirus GII.4 variants have been reported. The high diversity of noroviruses and periodic emergence of novel strains necessitates continuous global s...

Descripción completa

Detalles Bibliográficos
Autores principales: Mabasa, Victor Vusi, van Zyl, Walda Brenda, Ismail, Arshad, Allam, Mushal, Taylor, Maureen Beatrice, Mans, Janet
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788511/
https://www.ncbi.nlm.nih.gov/pubmed/36560736
http://dx.doi.org/10.3390/v14122732
Descripción
Sumario:The genogroup II genotype 4 (GII.4) noroviruses are a major cause of viral gastroenteritis. Since the emergence of the Sydney_2012 variant, no novel norovirus GII.4 variants have been reported. The high diversity of noroviruses and periodic emergence of novel strains necessitates continuous global surveillance. The aim of this study was to assess the diversity of noroviruses in selected wastewater samples from Pretoria, South Africa (SA) using amplicon-based next-generation sequencing (NGS). Between June 2018 and August 2020, 200 raw sewage and final effluent samples were collected fortnightly from two wastewater treatment plants in Pretoria. Viruses were recovered using skimmed milk flocculation and glass wool adsorption-elution virus recovery methods and screened for noroviruses using a one-step real-time reverse-transcription PCR (RT-PCR). The norovirus BC genotyping region (570–579 bp) was amplified from detected norovirus strains and subjected to Illumina MiSeq NGS. Noroviruses were detected in 81% (162/200) of samples. The majority (89%, 89/100) of raw sewage samples were positive for at least one norovirus, compared with 73% (73/100) of final effluent samples. Overall, a total of 89 different GI and GII RdRp-capsid combinations were identified, including 51 putative novel recombinants, 34 previously reported RdRp-capsid combinations, one emerging novel recombinant and three Sanger-sequencing confirmed novel recombinants.