Cargando…

Transcriptome Profiling in Swine Macrophages Infected with African Swine Fever Virus (ASFV) Uncovers the Complex and Close Relationship with Host

African swine fever virus (ASFV) is a pathogen to cause devastating and economically significant diseases in domestic and feral swine. ASFV mainly infects macrophages and monocytes and regulates its replication process by affecting the content of cytokines in the infected cells. There is a limited u...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Zhaoyao, Chen, Wenxian, Li, Xiaowen, Wu, Keke, Wang, Xinyan, Wang, Weijun, Li, Yuwan, Yi, Lin, Zhao, Mingqiu, Ding, Hongxing, Fan, Shuangqi, Chen, Jinding
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788513/
https://www.ncbi.nlm.nih.gov/pubmed/36558746
http://dx.doi.org/10.3390/pathogens11121411
Descripción
Sumario:African swine fever virus (ASFV) is a pathogen to cause devastating and economically significant diseases in domestic and feral swine. ASFV mainly infects macrophages and monocytes and regulates its replication process by affecting the content of cytokines in the infected cells. There is a limited understanding of host gene expression and differential profiles before and after ASFV infection in susceptible cells. In this study, RNA-seq technology was used to analyze the transcriptomic change in PAMs infected with ASFV at different time points (0 h, 12 h, 24 h). As a result, a total of 2748, 1570, and 560 genes were enriched in group V12 h vs. MOCK, V24 h vs. MOCK, and V24 h vs. V12 h, respectively. These DEGs (differentially expressed genes) in each group were mainly concentrated in the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways related to innate immunization and inflammation, including the NF-κB signaling pathway, Toll-like receptor signaling pathway, TNF signaling pathway, IL-17 signaling pathway, cytokine-cytokine receptor interaction, and chemokine signaling pathway. Furthermore, the increased levels of IL-1β, TNF-α, IKKβ, CXCL2, and TRAF2 and decreased level of IκBα were validated through the qPCR method. These results suggested that ASFV infection can activate the NF-κB signaling pathway in the early stage. In general, this study provides a theoretical basis for further understanding the pathogenesis and immune escape mechanism of ASFV.